
Int J Software Informatics, Vol.2, No.2, December 2008, pp. 181–197 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

2008 by Institute of Software, Chinese Academy of Sciences. All rights reserved. Tel: +86-10-62661040

Global and Local (Glocal) Bagging Approach for

Classifying Noisy Dataset∗

Peng Zhang1, Zhiwang Zhang1, Aihua Li2, and Yong Shi1,3

1(FEDS Research Center, Chinese Academy of Sciences,

Beijing 100190, China, {zhangpeng04, zzw06}@mails.gucas.ac.cn)

2(Depart. of Manage. Sci. & Eng., Central Univ. of Finance & Economics,

Beijing 100080, China, neu aihua@yahoo.com.cn)

3(College of Inform. Sci. & Eng., Univ. of Nebraska at Omaha,

Omaha, NE 68182, USA, yshi@gucas.ac.cn)

Abstract Learning from noisy data is a challenging task for data mining research. In

this paper, we argue that for noisy data both global bagging strategy and local bagging

strategy suffer from their own inherent disadvantages and thus cannot form accurate predic-

tion models. Consequently, we present a Global and Local Bagging (called Glocal Bagging:

GB) approach to tackle this problem. GB assigns weight values to the base classifiers under

the consideration that: (1) for each test instance Ix, GB prefers bags close to Ix, which is

the nature of the local learning strategy; (2) for base classifiers, GB assigns larger weight

values to the ones with higher accuracy on the out-of-bag, which is the nature of the global

learning strategy. Combining (1) and (2), GB assign large weight values to the classifiers

which are close to the current test instance Ix and have high out-of-bag accuracy. The

diversity/accuracy analysis on synthetic datasets shows that GB improves the classifier en-

semble’s performance by increasing its base classifier’s accuracy. Moreover, the bias/variance

analysis also shows that GB’s accuracy improvement mainly comes from the reduction of the

bias error. Experiment results on 25 UCI benchmark datasets show that when the datasets

are noisy, GB is superior to other former proposed bagging methods such as the classical

bagging, bragging, nice bagging, trimmed bagging and lazy bagging.

Key words: bagging; ensemble learning; sampling

Zhang P, Zhang ZW, Li AH, Shi Y. Global and local (glocal) bagging approach for

classifying noisy dataset. Int J Software Informatics, 2008, 2(2): 181–197. http://www.ijsi.

org/1673-7288/2/181.pdf

1 Introduction

Learning from noisy data is a realistic issue for data mining research. Under noisy

environment, formulating accurate classification functions or rules is often difficult

* This work is supported by a grant from National Natural Science Foundation of China (#70621001,
#70531040, #70501030, #10601064, #70472074), National Natural Science Foundation of Beijing
#9073020, 973 Project #2004CB720103, Ministry of Science and Technology, China and BHP Bil-
liton Co., Australia.
Corresponding author: Peng Zhang, Email: zhangpeng04@mails.gucas.ac.cn
Manuscript received 15 Oct., 2008; revised 4 Dec., 2008; accepted 20 Dec., 2008; published online 30
Dec., 2008.



182 International Journal of Software and Informatics, Vol.2, No.2, December 2008

because noisy data often deteriorates the classifier’s performance by complicating the

decision surfaces. Bagging, a well-known classifier ensemble method, can be used

to reduce this type of error by combining together multiple base classifiers learnt

from different versions of the training examples. The classical bagging method first

generates a series of independent bags through bootstrap sampling from the training

sample, then it trains a seriers of base classifiers from each bag, finally it predicts

the class label of each test instance by using majority voting mechanism. A lot of

studies have demonstrated that classical bagging method is powerful to improve the

classifier’s performance and thus has been widely used. Besides the classical bagging

method, many other bagging methods have been proposed to deal with different kinds

of data sources, which can be roughly categorzied into two different bagging strategies:

global bagging strategy and local bagging strategy.

The global bagging strategy only utilizes training sample to build a classifier

ensemble which tries to receive a minimal bias and variance error on the training

sample, such that it also can performance well on testing sample which is assumed

to share the same distribution with the training sample. Beriman’s bagging[1] and

its variants such as bragging[2], nice bagging[3], trimmed bagging[4] belong to this

category. It is commonly agreed that the performance of the global bagging strategy

critically depends on the base classifier’s accuracy. For noise free training dataset,

each base classifier will have low bias error, thus the global bagging strategy which can

reduce the variance error will achieve a good performance. However, if the training

sample contains a lot of noise, the base classifiers will have large bias error. Under this

situation, although global bagging strategy can decrease the variance error, the high

biased base classifiers will hurt its performance. In words, global bagging strategy

shows limited effect on noisy dataset.

Taking consideration of the limitation of global bagging strategy, recently people

proposed another local bagging strategy which delays the model building procedure

until seeing a specific test instance. The idea behind the local bagging strategy is

that when building models, we not only utilize the training sample’s information, but

also the test sample’s. Unlike the global bagging strategy which makes great efforts

to acquire minimal error on the whole training set, local bagging strategy tries to

build a classifier ensemble that has a minimal error on each specific test instance.

The most popular local learning method is to use a given number of the neighbors of

the test instance to customize base classifiers, such that the classifier ensemble can

achieve a minimal error on it. Recently, Zhu[5] proposed a lazy bagging (LB) method

which adds some neighbors of the current test instance Ix into each bag to decrease

its bias and variance error on Ix. Kotsiantis[6] proposed a local selective voting (LSV)

approach that directly builds base classifiers on the k-nearest neighbors, and then

only the classifiers that have statistically better accuracy (according to t-test with

p > 0.05) are chosen as a base classifier in the ensemble. Comparing these two

different approaches, we can observe that both LB and LSV aim to customize base

classifiers that biased towards the current test instance Ix, such that it can assign

the desired class label to Ix; moreover, they are all constructed on the assumption

that Ix’s nearest neighbors provide the correct information of Ix. In other words,

Ix’s neighbors should have the same class label with Ix. This may not be true when

the dataset is saturated with noisy instances, where Ix is probably surrounded by



Peng Zhang, et al.: Global and local (glocal) bagging approach for ... 183

instances with an opposite label. In conclusion, local bagging strategy is not capable

to classify noisy dataset without modification.

Consider a two-class toy dataset in Fig.1, the symbol “.” denotes instances be-

longed to group “-1” while “*” denotes instances belonged to “+1”, the circle “o”

means a randomly sampled bag (for simplification, we assume the bags are rather

small, it may only contains 2 or 3 instances), the classification boundary is a linear

one denoted by “/”. Figure 1(a) shows that global bagging strategy tries to find the

optimal global classification boundary. However, under noisy environment, finding

global optimal boundary is very difficult since the base classifiers may have large bias

error which deteriorates the classifier ensemble’s performance. Figure 1(b) illustrates

that to a specific noisy instance Nx denoted by an enlarged red dot in group “+1”,

by building classifiers on the nearest bags, we could correctly classify Nx. This is be-

cause Fig.1(b)’s situation accords with the local learning assumption that Nx’s nearest

neighbors share the same class label of Nx. In Fig.1(c), we can see that to a normal

instance denoted by an enlarged blue “*” in group “+1”, local bagging strategy will

misclassify it since it is enclosed with noisy instances. Fortunately, such error can be

corrected by taking account of the global optimal information, as shown in Fig.1(d)

where “Bag1” and “Bag2” are with the same distance to the enlarged blue “*”. When

we assign more weight values to “Bag2”, we could correctly classify it.

Figure 1. (a) Global optimal bagging tries to find the global optimal classification boundary,

which is always difficult due to the noisy instances such as the red enlarged start and circle.

(b) Local optimal bagging may help us to correctly classify the noisy instance (denoted

by a enlarged red solid circle) if only the neighbors has the same class label; (c) However,

if we merely use the neighbors’ information, we may misclassify a normal instance which

enclosed by noisy instances; (d) To an arbitrary instance, we should consider both

the local information and the global information.



184 International Journal of Software and Informatics, Vol.2, No.2, December 2008

In short, under noisy environment, the global bagging strategy tries to build a

global unbiased classifier ensemble, which is difficult due to the impact of the noisy

training instances (an alternative way is cleaning the training sample before building

models, i.e., Yan Zhang’s ACE method[7]), while the local bagging strategy which

uses the neighbors’ information to build base classifiers are too sensitive to the noise.

These observations motivate our research on Glocal Bagging (GB) method. The idea

behind GB is to combine the advantages of the global bagging strategy and the local

bagging strategy. To a specific test instance Ix, GB assigns each base classifier weight

value that is in proportion to the base classifier’s accuracy on out-of-bags (to get the

global information) meanwhile in reversely proportion to the distance between each

bag and Ix (to get the local information). By doing so, we expect to increase the

prediction accuracy on both normal and noisy instances in test set. We will study

why GB works better than the previously proposed bagging methods on noisy dataset

by diversity/accuracy analysis and bias/variance analysis.

It should be pointed out that GB neither directly adding the current test instance

Ix’s neighbors into bags as LB doing, nor using the neighbors to build base classifiers

as LSV doing, it calculates the distance between Ix and each bag to avoid the base

classifiers trapped into a local optimal solution. Since the performance of GB partly

relies on whether the bags near Ix are indeed provide helpful information, we need to

calculate the weight values of each attribute such that the weighted distance function

can indeed capture informative bags. We will discuss this in Section 2.

The remainder of this paper is organized as follows: in Section 2, we will present

the formulation of GB method in detail; in Section 3, we will study the rationale of

GB by using both diversity/accuracy analysis and bias/variance analysis on several

synthetic datasets with different levels of noise. In Section 4, we will report our

experiment resluts on 25 UCI benchmark datasets. In Section 5, we will conclude our

paper with discussing the future works.

2 Glocal Bagging

Consider a training set Tr = {xi, yi}
n
i=1 and a testing set Ts = {xi, yi}

m
i=1, xi ∈ R

d

and yi ∈ c. where c is the set of class labels, GB first builds s independent bags

Bi (i = 1, ..., s) and s out-of-bags Si = Tr\Bi (i = 1, 2, ..., s), then it builds base

classifiers using learning algorithm L on each bag Bi and gets fi = L(Bi). Since

many researches have revealed that the unstable classifiers such as decision tree, neural

networks probably receive a big improvement when using bagging method, we will

use decision tree as GB’s learning algorithm. Finally, GB adds weights wi to each

base classifier fi to formulate a new classifier ensemble fE = Σwifi to predict the

test set Ts. As we discussed above, GB’s weights wi (i = 1, ..., s) mainly come from

two parts: the base classifier’s accuracy on the corresponding out-of-bag (we denote p

below), and the distance between the current test instance Ix to the bags (we denote

d below).

To get the first part of wi’s weight, we test each base classifier fi’s accuracy on

the corresponding out-of-bag Si which can be denoted by pi = fi(Si) , and then we

normalize all the pi into the range [0,1]. As we said above, wi will be proportional to

pi.

To get the second part of wi’s weight, we need to calculate the distance between



Peng Zhang, et al.: Global and local (glocal) bagging approach for ... 185

the test instance and the distribution center of each bag. Taking a test instance

Ix ∈ Ts for consideration, to help Ix find the nearest bag, many attributes weighted

method, such as Information-gain Ratio (IR)[8] and ReliefF [9] can be employed. Here

we use IR method, interested readers can refer to Quinlan[8] for more information

about IR. After calculating of the IR value for each attribute, GB normalizes all the

IR values into range [0,1], then it uses the Euclidian distance in Equ.(1.1) to calculate

the distance between Ix to Bi,

d(Ix, Bi) =
1

n

n
∑

k=1

d(Ix, Bik) =
1

nr

n
∑

k=1

√

√

√

√

r
∑

j=1

IR′(Aj)(I
Aj
x − B

Aj

ik )2 (1)

where n is the number of instances in Bi, r is the number of attributes, Bik is the

kth instance in Bi, Aj denotes the jth attribute, I
Aj
x − B

Aj

ik is the number of value

difference on attribute Aj . If Aj is a nominal attribute, I
Aj
x −B

Aj

ik equals 0 iff both Ix

and Bik have the same value on Aj . Otherwise it equals 1. wi is of reverse proportion

to d. The whole procedure of GB is shown in Fig.2.

Input: a training set Tr = {(xi, yi)}n
i=1

, a testing set Ts = {(xi, yi)}m
i=1

, xi ∈ Rr , yi ∈ C,

learning algorithm L, given number of bags S

Output: prediction accuracy Acc

Begin{Glocal Bagging}

1. Initialize the prediction accuracy Acc = 0;

2. Generate S bags {Bi}
s
i=1

and out-of-bags {Si}
s
i=1

;

3. Build models on Bi using L, get the base classifiers fi (i = 1, , s);

4. Calculate each fi’s accuracy on Si to get the accuracy pi, then normalize pi to p′

i = pi
Σipi

;

5. For each test instance Ix ∈ Tr

5.1 Calculate the distances di between Ix and each Bi, and then normalize di to d′

i = di
Σidi

;

5.2 Calculate each base classifier’s weight wi =
p′

i

d′

i

, and then normalize wi to w′

i = wi
Σiwi

;

5.3 Construct a classifier ensemble fE = Σs
i=1

w′

ifi;

5.4 if fE(Ix) = Iyx , then Acc = Acc + 1 ;

End For;

6. return the prediction accuracy Acc = Acc/m;

End Glocal Bagging.

Figure 2. The generic framework of Glocal Bagging

3 The Rationale of GB

To investigate why and how GB works, in this section, we will discuss the ratio-

nale of GB method. Firstly, we design some synthetic datasets with different levels of

noise, and then we explain GB by both diversity/accuracy analysis and bias/variance

analysis.

3.1 Synthetic datasets

We generate four synthetic datasets with different levels of noise, i.e., 5%, 10%,

20%, 30% of noise. Each dataset is a 2-dimensional 2-class problem with 5000 in-

stances. All of the generated instances x comply with the Gaussian distribution



186 International Journal of Software and Informatics, Vol.2, No.2, December 2008

x ∼ N(µ, Σ), where µ is the mean vector and Σ is the covariate matrix. The classifi-

cation boundary is defined as a quadric surface ‖x‖2 = 1. Instances that satisfy will

be assigned a class label “-1” while those satisfy will be assigned a class label “+1”.

We can see that in these synthetic datasets, instances in each group distinguish each

other by its Euclid distance (the smaller the distance, the higher probability to belong

to the same group). Although we only generate two groups’ classification datasets, it

is easy to extend them to multiple groups circumstance.

3.2 Benchmark methods

As we discussed above, all the previously proposed bagging methods can be

categorized into two groups: global bagging strategy and local bagging strategy. To

investigate whether GB does work, we will compare it with other five bagging methods.

Four of them belong to global bagging strategy (classical bagging, bragging, nice

bagging, and trimmed bagging) and the remained one belongs to local bagging stratege

(Lazy Bagging). Assume we have s bags Bi (i = 1, ..., s), on which we build s base

classifiers fi (i = 1, ..., s), the classical bagging method gives test instance the most

frequent yi as

Gbag(x) = argmax[y∈c]

s
∑

i=1

fi(x) (2)

where x is the test set. A variant of the classical bagging method is bragging[2], which

computes a robust location. More specifically, it use the median location among the

s classifiers as

Gbrag(x) = fs/2(x) (3)

We can observe that bragging selects a special classifier which locates in the

middle of all the generated s classifiers, so the prediction error is equals to bias error

(this will be shown in the bias/variance analysis section). The third bagging method

is nice bagging[3], which chooses s′(s′ < s) base classifiers that has lower error rate

than a given value α on the whole training set,

Gnicebag(x) = argmax[y∈c]

s′

∑

j=1

gj(x) (4)

where gj(x) ∈ {fi(x)|Err(fi(Tr)) < α}. The latest proposed global bagging method

is Trimmed bagging[4], which chooses the best k base classifiers, k usually sets 75%

of the whole s bags.

Gtrimmedbag(x) = argmax[y∈c]

0.75∗s
∑

j=1

gj(x) (5)

where gj(x) ∈ {top 75% fi(Si)}. To the local bagging strategy, we choose the most

recent lazy bagging method as the benchmark method. Instances in LB’s bag are from

two parts, the first part is randomly selected from with replacement, the second part

is the knn instances (k is usually 3%-5% of the training samples). It is reported that

LB, by adding knn instances into each bag, can reduce its base classifier’s bias and

variance error, such that it is better than many other sample selection methods. For

ease of presentation, we use the shorten symbol for each bagging methods in Table 1.



Peng Zhang, et al.: Global and local (glocal) bagging approach for ... 187

Table 1 Symbols for each bagging method

Symbol Description

B Classical Bagging

BR Bragging

NB Nice bagging

TB Trimmed bagging

LB Lazy bagging

GB Glocal bagging

3.3 Diversity and accuracy analysis

Lots of research works[11−14] have shown that the performance of a classifier

ensemble is decided by its individual base classifier’s accuracy and diversity. Thus if

we want to improve the performance of a classifier ensemble, we need either to improve

its base classifier’s accuracy or to improve the diversity between base classifiers. A

good classifier ensemble always consists of highly accurate base classifiers (accuracy)

which at the same time disagree with each other as much as possible (diversity). But

this condition, in fact, is a trade-off between diversity and accuracy. For example, to

a specific test instance Ix, if all the base classifiers give it a same correct prediction,

then the accuracy of base classifiers are high but the diversity is low. To investigate

how diversity and accuracy affect GB’s performance, we will discuss them separately:

Diversity is important to ensemble mechanics because even if the performance

of base classifiers are not good, we can still acquire an excellent classifier ensemble

as long as the diversity is plenty enough. Generally speaking, diversity is increasing

with the number of bags. So many bagging methods generate a large number of bags.

For example, both the classical bagging and bragging methods need no less than

50 bags, and trimmed bagging uses even more bags. However, due to the trade-off

between diversity and accuracy, generating a large number of bags will reduce the

base classifier’s accuracy, thus deteriorating the classifiers ensemble’s performance.

What’s more, generating a lot of bags will take enormous computation time. That is

to say, there is another trade-off between diversity and computational complexity. To

tackle these two types of trade-offs, we define the following two concepts to measure

the increasing of diversity:

Definition 1. (Diversity Gain): Given a classifier ensemble fE and a new

coming classifier f , the quantity of diversity that f brings to fE is defined by DGf =

ExEl(f
l
E(x) − f l(x)). where subscribe l denotes class labels, x denotes test instance,

f l
E(x) denotes the expected value of the previous classifier ensemble on test instance

x at label l, f l(x) denotes the current classifier f ’s prediction on x at label l, f l
E(x)−

f l(x) can be calculated by adding up all the discrepancy on each class lable l between

classifier f and each base classifier fi in fE . The result DGf is the expectation of the

discrepancy of the current classifier f and the previous classifier ensemble fE .

From this definition, we can observe that the diversity gain describes how many

diversity (in quatity) we can acquire if adding a classifier f to a classifier ensemble fE.

Besides DGf , the changing tendency of DGf is also useful to describe the diversity.

Thus we give a diversity gain rate (DGR) definition as follows:

Definition 2. (Diversity Gain Rate): Given a classifier ensemble fE and a

new classifier f , the diversity gain rate is defined by DGRf =
DGf

DGf+DGfE

.



188 International Journal of Software and Informatics, Vol.2, No.2, December 2008

In Definition 2, calculation of can be regarded as a recursion procedure which

adds base classifiers one by one. Figure 3 shows the experimental results of DG, we

can see that DG, on all of the four synthetic datasets, increases dramatically when

the number of bags is increasing from 0 to 10 (where DG increases from 0 to average

0.21), and then becomes nearly flat (where DG has nearly no improvment from the

10th bag to the 100th bag). In words, after 10 bags, the diversity of DG nearly

keeps stable. Figure 4 exhibits the changing tendency of DG. We can see that the

changing rate of diversity is a monotonic decreasing function. It tells us that when

adding bags to a classifier ensemble, although the diversity receives improvment, the

extent of improvement becomes marginal. Combining Figs.3 and 4, we can come

to a conclusion that when the number of bags is less than 10, diversity increases

Figure 3. Diversity Gain under different levels of noise. We can see that when the number of

bags increases from1 to 10, there is a big improvement of DG. After 10, even if we add more

bags, the DG curve is smoothly flat, which means no big improvement of DG.

Figure 4. Diversity Gain Rate under different levels of noise. We can observe that the four

curves under the four levels of noise are almost overlapped, which tells us the fact that DGR

nearly affected by noisy levels. Another important property of DGR is that it is a monotonic



Peng Zhang, et al.: Global and local (glocal) bagging approach for ... 189

decreasing function. Increasing speed of diversity goes down with the number of bags increasing.

significantly; however, when the number of bags exceeds 10, the increasing speed

becomes slower. This also tells us that 10 bags probably is a satisfactory solution of

the trade-off between the accuracy, diversity and computational complexity.

Accuracy is another important factor to a classifier ensemble. The prediction

accuracy of a classifier ensemble is, in fact, proportional to the comprehensive accura-

cies of its constituent member. Given the same diversity, whether GB can outperform

other bagging methods critically depends on whether it can enhance its base classi-

fier’s accuracy. To investigate this, we give the following Lemma1 as:

Lemma 1. Given a diversity d, GB can achieve a more accurate classifier

ensemble than the former model averaging mechanics.

Proof : Assume we have a classifier ensemble fE which contains s base classifiers

fi (i = 1, 2, ..., s). To a specific test instance Ix, each base classifier has a probability

pi to correctly predict its class label. Then the model average mechanism on Ix can be

denoted as favg(Ix) = Σs
i=1uifi(Ix) , where each base classifier has the same weight

value ui = 1
s . To GB, it adds each base classifier a normalized but not equal weight

value wi (Σiwi = 1 ), where a much more accurate classifier fi (pm > pi) is assigned

heavier weight value. Thus the prediction of GB on Ix is

fCB(Ix) =
∑s

i=1 wifi(Ix) = wmpm +
∑

i6=m wipi

= (1 −
∑

i6=m wi)pm +
∑

i6=m wipi

= [um +
∑

i6=m(ui − wi)]pm +
∑

i6=m wipi

= [umpm +
∑

i6=m uipm

>
∑

uipi = favg(Ix)

(6)

So we can get

Ex[fCB(x)] > Ex[favg(x)]. (7)

Figure 4 lists the results of the six bagging methods on different noise levels. We

can see that GB always performs better than the other five bagging methods. The

superiority of GB varies with noise levels. When the noise level is 5%, GB is not

significantly superior to the other five methods. This may due to the fact that under

as low as 5% noise environment, both global and local bagging strategies perform

well. But when adding more noise, neither global bagging strategy nor local bagging

strategy performs well, which makes GB much more attractive. In words, GB is

superior to other bagging methods under noise environment.

3.4 Bias and variance analysis

The bias and variance analysis is widely used to asset classifier’s performance. It

is known that the smaller the bias and variance errors, the better the performance.

There have been a line of works on bias variance decomposition[16−19]. According to

Domingo’s decomposition[16], the expected loss of a learner L on a test instance x can

be decomposed as noise error N(x), bias error B(x) and variance error V (x):

EL(L, x) = c1N(x) + B(x) + c2V (x) (8)



190 International Journal of Software and Informatics, Vol.2, No.2, December 2008

Figure 5. Comparative study on the six different bagging methods, we can observe that GB

(depicted in read with circle curve) always has the least prediction error. (a) is the comparison on

5% noise level; (b) is on 10% noise level; (c) is on 20 noise level; (d) is on 30 noise level.

The margin between GB and others enlarges with the level of noise increasing. That is to say,

compared with others, GB is more professional in classifying noisy dataset.

Before calculating Equ.(8), we would like to introduce two important concepts

first: optimal prediction and main prediction. Consider a two-class (group c1

and group c2) noisy datasets, instance xi and instance xj (i j) may share the same

attribute but having different labels. We define the optimal prediction to be the most

frequent observed label t as

y∗
x = argmax[t∈c]p(t|x). (9)

We then define the main prediction ym
x to be the most frequent class label that

each base learner gives to x as

ym
x = argmax(p(c1|x), p(c2|x)). (10)

After defining y∗
x and ym

x , we can calculate the noise error of instance x by

counting the number of discrepancies between class label t and y∗
x:

N(x) =
∑

t

‖t 6= y∗
x‖p(t|x), (11)



Peng Zhang, et al.: Global and local (glocal) bagging approach for ... 191

where ‖z‖ = 1 if z is true, otherwise 0. Then bias error can be calculated by

B(x) =

{

1, ym
x 6= y∗

x

0, ym
x = y∗

x

(12)

The variance error is the discrepancies between each base classifier’s prediction

and the main prediction, which can be denoted as

V (x) =
1

s

s
∑

i=1

‖f(xi) − ym
x ‖. (13)

And the expected loss can be calculated as Equ.(14),

E(Loss) = E[N(x)] + Ex[B(x)] + Ex[V (x)]. (14)

where

E[N(x)] =
1

n

n
∑

i=1

N(xi) =
1

n

n
∑

i=1

∑

t

‖txi
6= y∗

xi
‖p(t|xi) (15)

Ex[B(x)] =
1

n

n
∑

i=1

B(xi) =
1

n

n
∑

i=1

|
ym

xi
− ti

2
| (16)

and

Ex[V (x)] =
1

n
V (xi) =

1

ns

∑

j = 1s
n

∑

i=1

‖ym
xi

6= f(xi)‖ (17)

More information can refer to Domingo[16] and Giorgio Valentini[18]’s work.

Table 2 Results of Bias variance analysis

Measure Algorithm 5% 10% 20% 30%

B 0.96 0.9346 0.8817 0.828

BR 0.9528 0.9314 0.8792 0.8268

Acc NB 0.9612 0.9344 0.8844 0.8274

TB 0.9623 0.9368 0.8842 0.8292

LB 0.9603 0.9320 0.8840 0.8320

GB 0.9625 0.9373 0.8875 0.8342

B 0.0326 0.0578 0.1117 0.1664

BR 0.0472 0.0686 0.1208 0.1732

BI NB 0.0315 0.0586 0.1086 0.1667

TB 0.0309 0.056 0.1095 0.1654

LB 0.0387 0.0668 0.1138 0.1654

GB 0.0305 0.0553 0.1057 0.1598

B 0.0074 0.0076 0.0066 0.0056

BR 0 0 0 0

VA NB 0.0073 0.007 0.007 0.0059

TB 0.0068 0.0072 0.0063 0.0054

LB 0.001 0.0012 0.0022 0.0026

GB 0.007 0.0074 0.0068 0.006



192 International Journal of Software and Informatics, Vol.2, No.2, December 2008

Table 2 reports the 10-folder cross validation of bias variance decomposition re-

sults on the synthetic datasets. The first column lists three measurements including

accuracy, bias and variance. The second column shows the comparative algorithms.

All of the bagging methods are using 10 bags. The 3th to 6th column list the ex-

periment results. We won’t report the noise error N(x) here because noise error is

independent of classifiers, it is only related to the nature of dataset. Since compar-

isons are on the same synthetic datasets, the noise error will be the same and can be

removed. From Table 2, we can observe that, GB always has the highest accuracy and

the minimal bias error (we darkle them in Table 2). That is to say, GB achieves much

better results than other bagging methods by significantly reducing its bias error.

4 Experiments

4.1 Experimental settings

The whole system is implemented in Java with an integration of WEKA data

mining tool[18]. As we mentioned above, we use decision tree (WEKA J4.8 imple-

mentation with default parameters) as our base classifier. The objective of these

experiments is two folder: (1) comparing GB with B, BR, NB, TB and LB on 25 UCI

benchmark datasets[19] to investigate whether GB is better; (2) Ranking all of the

bagging methods. To meet the needs of the noisy data sources, we produce different

levels of noise by randomly selecting 5%, 10%, 20%, 30% instances from the 25 UCI

datasets and assign them an arbitrary label which is not equal to their original label.

It should be pointed out that to a nominal attributes, the value will be 1 when their

attribute value is the same, otherwise 0.

4.2 Assessment by ranking

To investigate the performance of each bagging method, we rank all of the bagging

methods and calculate their number of winning chances and losing chances. Consider

a instance x in a test set, if the predicted class label of x is the same with its highest

posterior probability, then x is correctly predicted. Accuracy (acc) is defined as the

proportion of the number of correctly classified test instances. Furthermore, according

to each classifier’s accuracy, we rank all of the algorithms in the range of 1 to 6,

classifiers with the highest accuracy will be ranked as 1 and the worst classifiers will

be ranked as 6. It is should be noticed that there may be more than one classifiers rank

1 (or rank 6) at the same time if these classifiers have the same highest accuracy (or

the lowest accuracy). We define other two measurements Winner (#W) and Loser

(#L) as follows: if a classifier is ranking 1, then we increase its #W by 1; on the

contrary, if ranking 6, we add its #L by 1. Repeating this procedure on the whole 25

UCI data set, we get the Average Ranking (AR), standard deviation of Ranking (SR)

and the total number of #W and #L for each bagging methods. A good classifier

should have an average rank AR close to 1, more #W, less #L. Meanwhile, if an

algorithm is with smaller SR, it is more stable.

4.3 Experimental results

Table 3 reports the experiment results of the comparisons of the six algorithms

on different levels of noise. The first column list the name of the used dataset (listed



Peng Zhang, et al.: Global and local (glocal) bagging approach for ... 193

Table 3 Comparisions on 25 UCI datasets

B BR NB TB LB GB

0.6682 0.6191 0.5546 0.4925 0.6619 0.6352

0.5440 0.5271 0.6603 0.5882 0.5720 0.4617
balance 0.7126 0.6470 0.5813 0.5382 0.7350 0.6673

0.6024 0.5318 0.7476 0.6823 0.6186 0.5419

0.7142 0.6580 0.5911 0.5594 0.7107 0.6451

breast 0.5676 0.4918 0.7071 0.6483 0.5676 0.5540
0.7321 0.6709 0.6406 0.5918 0.7178 0.6419
0.6250 0.5324 0.6964 0.6812 0.6506 0.6189

0.9051 0.8998 0.9012 0.912 0.901 0.9241

car 0.8105 0.8063 0.8078 0.8221 0.8247 0.8373
0.7333 0.7294 0.7425 0.7808 0.7526 0.7632
0.6651 0.6584 0.6758 0.6861 0.675 0.7001

0.4121 0.4716 0.4189 0.4614 0.4817 0.5054

cmc 0.3481 0.4308 0.3858 0.4067 0.4308 0.4438
0.3028 0.3852 0.3068 0.3664 0.3977 0.4039
0.268 0.3643 0.2837 0.3099 0.3282 0.3534
0.7882 0.7852 0.7882 0.8117 0.7794 0.8147

ecoli 0.6837 0.6729 0.7027 0.7054 0.7162 0.7513
0.625 0.6 0.6024 0.64 0.565 0.6825
0.5325 0.4813 0.5465 0.5581 0.486 0.6
0.5952 0.6 0.5999 0.6523 0.5799 0.6952

glass 0.5391 0.5347 0.5739 0.6043 0.6 0.6782
0.408 0.516 0.4599 0.472 0.4319 0.548
0.3444 0.374 0.3703 0.3851 0.3814 0.4666
0.9111 0.9081 0.9051 0.9155 0.897 0.9125

Halloffame 0.8244 0.8136 0.8299 0.8346 0.821 0.8272
0.7337 0.7006 0.7412 0.7493 0.6912 0.7619
0.6298 0.5862 0.6224 0.6614 0.6195 0.7074
0.6153 0.723 0.6307 0.6692 0.7076 0.6846

hayes 0.6142 0.6142 0.6 0.6357 0.6477 0.6571
0.5333 0.5666 0.5466 0.5666 0.58 0.6
0.5117 0.5529 0.4999 0.5526 0.5176 0.5529
0.8828 0.86 0.8971 0.8942 0.8742 0.8857

ionosphere 0.8472 0.7944 0.8444 0.8555 0.7916 0.8666
0.7894 0.7526 0.7842 0.8184 0.7473 0.8236
0.5822 0.5466 0.5577 0.6244 0.511 0.6522

0.9832 0.9779 0.9838 0.9844 0.9829 0.9838

Kr-vs-kp 0.9008 0.8943 0.9011 0.9019 0.8968 0.9025
0.824 0.8018 0.8206 0.825 0.8156 0.8261
0.746 0.7108 0.7373 0.7474 0.7231 0.7506
0.7333 0.7066 0.76 0.7666 0.7333 0.7666

lymph 0.6251 0.65 0.6312 0.6625 0.6437 0.7
0.5529 0.5764 0.5235 0.5764 0.5705 0.5882
0.4631 0.526 0.4578 0.5052 0.4789 0.5263
0.79 0.72 0.76 0.82 0.74 0.85

promoters 0.6454 0.6545 0.6727 0.6818 0.7 0.7363
0.525 0.5166 0.6083 0.5916 0.5583 0.5666
0.4538 0.5 0.4769 0.523 0.523 0.5307
0.8538 0.8615 0.8384 0.8538 0.8461 0.8538

prostate 0.7533 0.7466 0.7466 0.7466 0.6866 0.76
0.6 0.575 0.5875 0.6375 0.5687 0.6187

0.5294 0.5764 0.5352 0.547 0.4647 0.5647
0.9523 0.9377 0.9515 0.9549 0.9532 0.957

segment 0.8673 0.8393 0.8598 0.874 0.8511 0.8826
0.7779 0.731 0.7714 0.7866 0.8028 0.7555
0.6786 0.6289 0.6526 0.696 0.6423 0.719



194 International Journal of Software and Informatics, Vol.2, No.2, December 2008

Table 3(Continued) Comparisions on 25 UCI datasets

0.738 0.6523 0.7333 0.7523 0.7476 0.7714

Sonar 0.6476 0.6 0.6428 0.6857 0.6095 0.6904

0.4833 0.5 0.4791 0.5333 0.5708 0.5249

0.3703 0.4962 0.3925 0.4666 0.4037 0.4555

0.9291 0.9167 0.9273 0.9332 0.9251 0.9366

splice 0.8376 0.8222 0.8304 0.8432 0.8304 0.8982

0.7945 0.7647 0.7907 0.8019 0.7756 0.8464

0.752 0.7159 0.7481 0.7628 0.7659 0.8092

0.7185 0.674 0.6962 0.7222 0.7404 0.7407

Staheart 0.7285 0.7035 0.6821 0.75 0.7214 0.7607

0.6161 0.6032 0.6064 0.6612 0.558 0.6387

0.46 0.5 0.4657 0.4971 0.4457 0.5028

0.5 0.5266 0.4733 0.5333 0.5133 0.5933

ta 0.4187 0.4062 0.4187 0.4937 0.425 0.5125

0.3833 0.4333 0.3944 0.3999 0.4333 0.4666

0.2526 0.3578 0.2842 0.321 0.3789 0.3842

0.8864 0.8218 0.8645 0.9052 0.8708 0.9208

Tic-Tac-toe 0.7742 0.719 0.7571 0.7971 0.7847 0.8028

0.6782 0.64 0.6765 0.7147 0.6704 0.7139

0.5766 0.5693 0.5661 0.6161 0.5959 0.5967

0.667 0.6894 0.6917 0.7023 0.6811 0.7352

Vehicle 0.5688 0.5698 0.586 0.6172 0.5752 0.6526

0.4792 0.5217 0.492 0.5336 0.498 0.5801

0.3927 0.439 0.4181 0.4445 0.4063 0.49

0.775 0.7369 0.756 0.806 0.8029 0.883

vowal 0.6541 0.6321 0.6376 0.6944 0.6761 0.7853

0.5457 0.5228 0.5347 0.5983 0.5923 0.6915

0.4421 0.4531 0.4445 0.4875 0.4765 0.5992

0.8762 0.8627 0.8627 0.8813 0.8423 0.8898

wdbc 0.8225 0.7887 0.8193 0.8403 0.7822 0.8435

0.7738 0.7261 0.7461 0.7907 0.7184 0.7923

0.6594 0.6175 0.6594 0.6932 0.604 0.6783

0.9222 0.9277 0.9 0.9277 0.8833 0.9222

wine 0.7736 0.7578 0.7947 0.8105 0.7473 0.821

0.7285 0.6904 0.7142 0.7428 0.5761 0.7571

0.5869 0.5608 0.5347 0.6217 0.4826 0.6391

0.4644 0.5033 0.4348 0.5161 0.5865 0.5275

yeast 0.3822 0.4374 0.411 0.4368 0.4453 0.5282

0.3084 0.3769 0.3179 0.3516 0.3567 0.4393

0.2367 0.3341 0.2694 0.286 0.3176 0.3808

0.9 0.9099 0.89 0.91 0.93 0.9202

zoo 0.8181 0.7818 0.8181 0.8363 0.835 0.8736

0.725 0.7333 0.75 0.75 0.7333 0.7583

0.623 0.6692 0.6692 0.6923 0.6384 0.7

by alphabet order), the 2th to 7th column list the results with different algorithms.

Each cell in the table contains four numeric values which denotes the results on 5%,



Peng Zhang, et al.: Global and local (glocal) bagging approach for ... 195

10%, 20% and 30% noise levels. The results are averaged on 10-folder cross validation.

Since the variances are rather small with little discrepancy, to save space, we won’t

report them here. We can observe that on the 25 datasets with four different noise

levels, GB performs the best on 85 results out of 100. Out of 25 datasets, 12 datasets

are with the best accuracy reports on all the four different levels of noise, and we

observe 8 weaknesses come from 5% level of noise, which takes the biggest part. This

is because under 5% noise level, it is not significant to discriminate a noisy dataset

and a normal one, so the global bagging strategy may also perform well. When the

noise level increases, the improvement between GB and B is significantly, i.e., on the

“car” dataset, when the noise level is 5%, the improvement on GB is 1.9%. When

10% noise, the improvement is 2.68%. When 20%, it achieves 3.0%. And when 30%,

it reaches 3.5%. This demonstrates that GB can achieve a better result, especially

when noise level is large. Table 4 to Table 7 report the ranking results of the six

bagging methods under different levels of noise. As we talked above, we use average

ranking, standard deviation of ranking, number of winners and losers as the evaluation

methods. In Table 4, we can observe that GB with the highest rank (rank 1.64), the

most winners (17 winners) and the least losers (1 losers). TB ranks the second (rank

2.16), with 6 winners, and 1 losers. LB ranks the third (rank 3.8), with 2 winners and

5 losers. BR ranks the last (rank 4.72), with the most losers (10 losers). The whole

ranks of the six algorithms under 5% noise level can be concluded as:

ARGB < ARTB < ARLB < ARB < ARNB < ARBR. (18)

Table 5 lists the results under 10% noise level. We can observe that GB is with

the highest rank (rank 1.04), the most winners (17 winners). TB ranks the second,

with average rank (rank 2.36) and the least losers (0 losers). LB ranks the third, with

average rank 3.80, B ranks after LB, with an average rank 4.16, BR ranks the last,

with the most losers (11 losers). The ranks can be orders as:

ARGB < ARTB < ARLB < ARB < ARNR < ARBR. (19)

In Table 6, we report the results on 20% noise level. As we can see, GB also

performs the best on all the four evaluation methods. It has the highest rank (rank

1.48), the least deviation 0.96, the most winners (18 winners) , and the least losers

(0 losers). TB, with an average rank 2,12, 4 winners, 0 losers, ranks the second.

Following TB is LB, which ranks 3.88, with 2 winners, 6 losers. The ranks of this

table can be written as :

ARGB < ARTB < ARLB < ARB < ARNR < ARBR. (20)

In Table 7, we exhibit the results on 30% noise level, GB is still with the best

performance. It has the highest rank (rank 1.29), the least SR (0.62), the most winners

(19 winners) and the least losers (0 losers). TB still lists behind GB, with an average

rank 2.37, 2 winners and 0 losers. BR lists the third, with an average rank 3.75, 4

winners and 6 losers. NB ranks after BR (rank 4.5), and B ranks the last (rank 4.79),

with 0 winners and 10 losers.

ARGB < ARTB < ARBR < ARLB < ARNR < ARB . (21)



196 International Journal of Software and Informatics, Vol.2, No.2, December 2008

Table 4 Ranking on 5% noise level

B BR NB TB LB GB

AR 3.92 4.72 4.48 2.16 3.8 1.64

SR 0.99 1.48 1.04 1.06 1.68 1.18

#W 0 1 0 6 2 17

#L 1 10 4 1 5 1

Table 5 Ranking on 10% noise level

B BR NB TB LB GB

AR 4.16 5 4.28 2.36 3.8 1.04

SR 1.18 1.19 0.94 0.7 1.52 0.2

#W 0 0 0 1 0 24

#L 4 11 3 0 5 1

Table 6 Ranking on 20% noise level

B BR NB TB LB GB

AR 4.28 4.56 4.12 2.12 3.88 1.48

SR 1.4 1.47 1.19 0.73 1.67 0.96

#W 0 0 1 4 2 18

#L 6 9 2 0 6 0

Table 7 Ranking on 30% noise level

B BR NB TB LB GB

AR 4.79 3.75 4.5 2.37 4.04 1.29

SR 1.25 1.82 0.93 0.82 1.33 0.62

#W 0 4 0 2 0 19

#L 10 6 4 0 3 0

Comparing (21) with (18), (19) and (20), we can find a slight change of orders,

LB falls from the 3th to 4th, BR replaces LB, becoming the 3th. B drops to the last

rank. This is because when noise level is large, LB probably contains many noisy

neighbor instances into each bag, which increases its base classifiers’ bias errors and

thus reduces its accuracy on prediction. BR, which always finds a robust location,

may not increase its bias error as fast as other bagging methods. And due to its

minimal variance error, we can observe a big improvement when the noise level is

increasing.

4 Conclusions

Under noise environment, the global bagging strategy is not able to receive a

good performance because the noise aggravates its base classifier’s bias error. On

the other hand, the local bagging strategy which uses k nearest neighbor instances

to trim bootstrap bags neither can not achieve a good result because the k nearest

neighbors may provide a wrong information to classify the test instance due to the

noise. In this paper, we present a Global and Local Bagging (GB) method which

combines the strength of both global and local bagging strategies. GB adds weight

to each base classifier which is both proportional to the base classifier’s accuracy on

the out-of-bags and reversely proportional to the distance between the bags and the

test instance. Experimental results on UCI benchmark dataset have demonstrated

that GB performs better than the existing bagging, bragging, nice bagging, trimmed

bagging, lazy bagging methods.

Acknowledgements This research has been partially supported by a grant from

National Natural Science Foundation of China (#70621001, #70531040, #70501030,

#10601064, #70472074), National Natural Science Foundation of Beijing #9073020,

973 Project #2004CB720103, Ministry of Science and Technology, China and BHP

Billiton Co., Australia.

References

[1] Breiman L. Bagging predictors. Journal of Machine Learning, 1996, 24: 123–140.

[2] Buhlmann P. Bagging, subbagging and bragging for improving some prediction algorithms.

In: Akritas MG, Politis DN, eds. Recent Advances and Trends in Nonparametric Statistics.



Peng Zhang, et al.: Global and local (glocal) bagging approach for ... 197

Elsevier, Amsterdam, 2003. 9–34.

[3] Skurichina M, Duin B. Bagging for linear classifiers. Pattern Recognition 1998, 31: 909–930.

[4] Christophe Croux, Kristel Joossens, Aurelie Lemmens. Trimmed Bagging. Computational

Statistics & Data Analysis, 2007, 52: 362–368.

[5] Zhu XQ. Lazy Bagging for Classifying Imbalanced Data. In: Proc. of IEEE ICDM 2007. 2007.

763–768, 2007.

[6] Sotiris Kotsiantis, Dimitris Kanellopoulos. Local selective voting. In: Proc. of IEEE ICCIT

2007. 1621–1626.

[7] Zhang Y, Zhu XQ, Wu XD, Bond JP. ACE: An aggressive classifier ensemble with error detec-

tion, correction, and cleansing. In: Proc. of 17th IEEE ICTAI. 2005. 310–317.

[8] Quinlan JR. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[9] Konoeneko I. Estimating attributes, analysis and extension of RELIEF. In: Proc. of the ECML

Conference. 1994.

[10] Hanstie L, Salamon P. Neural networks ensembles. IEEE Trans. on Pattern Anal. Mach. Intell.,

1990, 12(10): 993–1001.

[11] Optiz DW, Shavlik JW. Generating accurate and diverse members of a neural-network ensemble.

Neural Inform. Proc. System, 1996, 8: 535–41.

[12] Dietterich TG. An experimental comparison of three methods for constructing ensembles of

decision trees, bagging, boosting and randomization. Mach. Learn., 2000, 40(2): 139–157.

[13] Rodriguez JJ, Kuncheva LI, Alonso CJ. Rotation forest: A new classifier ensemble method.

IEEE Trans. on Pattern Anal. Mach. Intell.,2006, 28(10): 1619–1630.

[14] Kong EB, Dietterich TG. Error-Correcting output coding corrects bias and variance. In: Proc.

of the 12th ICML Conf. 1996.

[15] Domingos P. A Unified bias-variance decomposition and its applications. In: Proc. of ths

Sventeeth Interntional Conf. on Machine Learning. Stanford, CA, Morgan Kaufmann., 2000.

231–238.

[16] Domingos P. A Unifed bias-variance decomposition for zero-one and squared loss. In: Proc. of

the 17th National Conference on Artificial Intelligence. Austin, TX, AAAI Press, 2000.

[17] Valentini G, Dietterich TG. Bias-Variance analysis of support vector machines for the devel-

opment of SVM-based ensemble methods. Journal of Machine Learning Research, 2004, 5:

725–775.

[18] Witten I, Frank E. Data Mining: Practical Machine Learning Tools and Techniques. Morgan

Kaufmann, 2005.

[19] UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/.


