Nov. 2007

Control and Decision

文章编号: 1001-0920(2007)11-1259-05

权数非独裁性条件下基于竞争视野优化的多属性决策方法

易平涛,郭亚军

(东北大学 工商管理学院, 沈阳 110004)

摘 要:在"权数非独裁性条件"和"竞争视野优化准则"假设的基础上,提出一种体现"自主决策"的多属性决策方法.该方法将各评价对象平等地视为具有自主性的"智能体",并具有"突出自身优势、弱化对手优势"的一致目标.据此,构建反映评价对象各自利益的竞争模型,通过对多个竞争视野下的评价信息进行再集结,得到评价对象集的一个公平的排序.最后,应用算例验证了所提出方法的有效性.

关键词: 权数非独裁性条件; 竞争视野优化; 自主式决策; 多属性决策

中图分类号: C934 文献标识码: A

Multi-attribute decision-making method based on competitive view optimization under condition of weights nondictatorship

YI Ping-tao, GUO Ya-jun

(School of Business Administration, Northeastern University, Shenyang 110004, China. Correspondent: YI Pingtao, E-mail: yipingtao @163.com)

Abstract: Based on weights nondictatorship and competitive view optimization principle, a multi-attribute decision-making method indicating self-determination is proposed. Every evaluation object is taken as an intelligent agent with self-determination fairly. The method has the consistent goal of focusing on self-advantage and weakening rival 's. A competition model indicating respective benefit of evaluation objects is set up. Then, by reaggregating the information of multiple competitive views, a fair order of evaluation objects is obtained. Finally, a numerical example shows the effectiveness of the proposed method.

Key words: Weights nondictatorship condition; Competitive view optimization; Self-determination decision making; Multi-attribute decision making

1 引 言

有限方案的多属性决策(或多指标综合评价)问题一直是决策分析领域的一个重要分支,迄今为止已取得了大量的研究成果[1-6].但几乎所有方法都将评价对象(或方案)视为被动的"评价客体",在自上而下的决策过程中评价对象是没有"发言权的"本文将具有该特点的决策方法归结为"他主式"决策方法.从评价对象的角度考察自身与竞争对手状况的方式势必会与"他主式决策方式"有很大的不同:一方面可改变决策中过分依赖专家的情形;另一方面可突出决策的"民主性"特点,更加充分地利用评价对象本身的信息.因而,本文将评价对象全面参与决策过程的决策方式定义为"自主式决策".该方法可

按所针对的评价对象的不同划分为两大类:一是评价对象是有分析能力的个体,能在决策过程中提供除自身客观信息之外的许多主观信息,称之为主观自主式决策方法;二是评价对象是不具有分析能力的客观事物,仅能被当作有思考能力的个体来模拟某类主体的行为,称之为客观自主式决策方法.本文仅研究后者,并提出一种多属性决策方法.

文献[7]可看成是对客观自主式决策方法的一项类似的研究.文中考虑了评价对象自身的优势,将评价对象作为主体来参与竞争,提出了一种基于 Nash 均衡约束的竞争性评估方法.但文献[7]中构建的模型在应用时求解较为复杂,从而增加了决策的难度.本文从另一个角度给出一种应用更为简便

收稿日期: 2006-10-16; **修回日期**: 2007-03-09. **基金项目**: 国家自然科学基金项目(70472032).

作者简介: 易平涛(1981 → ,男,湖南永州人,讲师,博士,从事决策分析、系统评价等研究; 郭亚军(1952 → ,男,辽

宁开原人,教授,博士生导师,从事系统评价理论与技术、企业资源配置与优化等研究.

的自主式决策方法.

2 客观自主式决策方法原理

设由 n 个评价对象(或方案) $o_1, o_2, ..., o_n$ 和 m个指标(或属性) $x_1, x_2, ..., x_m$ 组成多指标评价系 统. $x_{ii} = x_i(o_i)$ (i = 1, 2, ..., n, j = 1, 2, ..., m) 为评 价对象 o_i 在指标 x_i 下的取值. 评价数据矩阵 (决策 矩阵) 可表示为

$$\mathbf{A} = [x_{ij}]_{n \times m} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1m} \\ x_{21} & x_{22} & \dots & x_{2m} \\ \dots & \dots & \ddots & \dots \\ x_{n1} & x_{n2} & \dots & x_{mm} \end{bmatrix}$$

 $id M = \{1, 2, ..., m\}, N = \{1, 2, ..., n\}$ (不失一 般性,不妨设m,n=3). 设m个指标均为极大型(效 益型) 指标, A 中数据为规范化后的数据.

方法构建的基本思路是:建立基于指标权数取 值约束的"权数非独裁性条件"及模拟经济人"自 利 "行为特点的" 竞争视野优化准则 ",依据这 2条假 设构建决策模型,并对得到的信息进行集结,最后获 取体现"评价对象自主决策"思想的结论。

2.1 权数非独裁性条件及推导

"权数非独裁性条件"用于确定指标权重的取 值范围,其规范表述如下:

假设1(权数非独裁性条件) 任一指标对于其 余重要性较低的指标全体而言是非主导性的.

不妨设 m 个指标具有优先序, $x_1 > x_2 > ... >$ x_m ,记 $x_i(i M)$ 的权重为 w_i ,即有 w_1 wm 成立. 按照假设 1, 会有如下不等式:

$$\begin{cases} w_1 & w_2 + w_3 + \ldots + w_m, \\ w_2 & w_3 + \ldots + w_m, \\ \dots & \\ w_{m-2} & w_{m-1} + w_m, \\ w_{m-1} & w_m. \end{cases}$$
(1)

定理 1 设指标集 $\{x_i \mid i \in M\}$ 的优先序为 x_1 $> x_2 > ... > x_m, x_i$ 的权重为 w_i ,权重满足归一化 条件 $w_i = 1$,若 $\{x_i\}$ 满足假设 1 条件,则必有 w_i

 $[0.5^{m-1}, 0.5]$ 及 $w_{m-1} = w_m$ 成立.

由式(1) 中的约束条件 证明

$$w_1$$
 $w_2 + w_3 + ... + w_m \Rightarrow$
 $2w_1$ $w_1 + w_2 + ... + w_m = 1 \Rightarrow$
 w_1 0.5.

又

$$w_1$$
 $w_2 + w_3 + ... + w_m \Rightarrow$
 $w_1 + w_2 + ... + w_m$
 $2(w_2 + w_3 + ... + w_m) \Rightarrow$
 0.5 $w_2 + w_3 + ... + w_m$

$$2(w_3 + ... + w_m) ...$$

$$2^{m-3}(w_{m-1} + w_m)$$

$$2^{m-2}w_m \Rightarrow 0.5^{m-1} w_m.$$

综上,由 wı w_2 ... w_m 可知, w_j 0. 5 1 , i

又因 w_{m-1} w_m 及 w_{m-1} w_m 同时成立.故 $w_{m-1} = w_m, j \qquad M.$

定义 1 设指标 $x_j(j-M)$ 的权重为 w_j ,且满 足 w_1 w_2 ... w_m ,则称 w_j $[0.5^{m-1},0.5]$ 为 弱权数非独裁性条件:称

$$\begin{cases} w_1 & w_2 + w_3 + \dots + w_m, \\ w_2 & w_3 + \dots + w_m, \\ \dots \\ w_{m-2} & w_{m-1} + w_m, \\ w_1 + w_2 + \dots + w_m = 1, \\ w_{m-1} = w_m, \\ 0.5^{m-1} & w_j & 0.5, j & M \end{cases}$$
(2)

为强权数非独裁性条件.

显然,强权数非独裁性条件是假设1的等价条 件,而弱权数非独裁性条件则是假设1的必要条件.

现考虑在"权数非独裁性条件"下评价对象 $o_i(i)$ N) 的综合评价值 vi 的取值范围. 选用加性模 型[2] 对多指标信息进行集结,即有

$$y_i = \sum_{j=1}^m x_{ij} w_j. \tag{3}$$

评价对象 $o_i(i N)$ 的指标值为 x_{i1} , x_{i2}, x_{im} .对应的权重向量为 $w_i = (w_{i1}, w_{i2}, ...,$ wim). 若按数值从大到小(降序) 排列后的指标值为 x_{i1} , x_{i2} , ..., x_{im} , 相应的重排分量后的权重向量为 w_i $= (w_{i1}, w_{i2}, ..., w_{im})$,则称 w_i 为关于 $x_{i1}, x_{i2}, ..., x_{im}$ 的降序权向量.

由定义 2,式(3) 可写成

$$y_k^{(i)} = \sum_{j=1}^m x_{kj} w_{ij} = \sum_{j=1}^m x_{kj} w_{ij}.$$
 (4)

其中: $w_i(\mathbf{g} w_i)$ 为与评价对象 $o_i(i N)$ 相关的权 向量, $v_k^{(i)}$ 为评价对象 $o_k(k-N)$ 关于 o_i 的综合评价 值.

定理 2 对评价对象 $o_i(i N)$, 在"弱权数非 独裁性条件"下,使综合评价值 vi 分别取最大值、最 小值的最优降序权向量和最劣降序权向量分别为 \mathbf{w}_{i}^{u} , \mathbf{w}_{i}^{f} ,即

$$\mathbf{w}_{i}^{u} = (0.5, 0.5 - (m - 2)0.5^{m-1}, \\ 0.5^{m-1}, ..., 0.5^{m-1}), \\ \mathbf{w}_{i}^{f} = (0.5^{m-1}, ..., 0.5^{m-1}, ...)$$

$$0.5 - (m - 2) 0.5^{m-1}, 0.5).$$

证明 设某一评价对象中的任意 2 个指标值 a_1 和 $a_2(a_1 > a_2)$,对应的权重为 w_1, w_2 ,要求 w_1 , $b_1, w_1 + w_2 = b_2$. 由集结模型(3),总有

$$a_1 w_1 + a_2 w_2 =$$
 $a_1 w_1 + a_2 (w_2 - b_1) + a_2 b_1$
 $a_1 w_1 + a_1 (w_2 - b_1) + a_2 b_1 =$
 $a_1 (b_2 - b_1) + a_2 b_1$.

以上说明,对于任意2个指标值,在约束范围内 将权重尽可能分配到最大的指标值上,能使评价值 达到最大. 对于多个指标值的情形, 总能通过以上方 式的两两调整达到最大值.

在"弱权数非独裁性条件"下,w; $[0.5^{m-1}]$ $0.51(i \ M)$, 欲使 v_i 取最大值, 可令 $w_1 = 0.5$, 将 剩余的 0.5 个单位的权重分配给其余指标,要求尽 可能将权重分配到第 2 大的指标值 x_2^* 上,因而有

$$w_2 = 0.5 - (m - 2)0.5^{m-1},$$

 $w_j = 0.5^{m-1}, j = 3,4,...,m,$

故最优降序权向量

$$\mathbf{w}_{i}^{u} = (0.5, 0.5 - (m - 2)0.5^{m-1}, \\ 0.5^{m-1}, \dots, 0.5^{m-1}).$$

反向推导, 使综合评价值 yi 取最小值的最劣降 序权向量是最优降序权向量的反序. 故

$$\mathbf{w}_{i}^{f} = (0.5^{m-1}, ..., 0.5^{m-1}, \\
 0.5 - (m - 2)0.5^{m-1}, 0.5).$$

推论 1 在"弱权数非独裁性条件"下, $o_i(i)$ N) 的综合评价值 vi 的取值范围为

$$[0.5 \underline{x}_{im} + [0.5 - (m - 2)0.5^{m-1}]\underline{x}_{i,m-1} + \\ 0.5^{m-2} \underbrace{x}_{j=1}, 0.5\underline{x}_{i1} + [0.5 - \\ (m - 2)0.5^{m-1}]\underline{x}_{i2} + \\ 0.5^{m-1}\underline{x}_{ij}].$$

证明 由定理 2 及式(4) 即可得证.

定理 3 对于评价对象 $o_i(i N)$, 在"强权数 非独裁性条件"下,使综合评价值 yi 分别取最大值、 最小值的最优降序权和最劣降序权分别为 w#, wf, 即

限于篇幅,证明略.

推论 2 在"强权数非独裁性条件"下, $o_i(i)$ N) 的综合评价值 yi 的取值范围为

$$\left[\sum_{j=1}^{2} 0.5 \left(1 - \sum_{k=1}^{m-2} 0.5^{k} \right) \underline{x}_{ij} + \sum_{j=3}^{m} 0.5^{m+1-j} \underline{x}_{ij} , \right.$$

$$\left[\sum_{j=1}^{m-2} 0.5^{j} \underline{x}_{ij} + \sum_{j=m-1}^{m} 0.5 \left(1 - \sum_{k=1}^{m-2} 0.5^{k} \right) \underline{x}_{ij} \right] .$$

由定理 3 及式(4) 即可得证. 证明

2.2 竞争视野优化准则及推导

多属性综合评价的过程即为评价对象相互竞争 并确立各自地位的过程,下面给出"竞争视野"的定 V \

定义3 对评价对象 $o_i(i N)$, 若 C_i 为与 o_i 具 有潜在竞争关系的所有评价对象的集合,则称 C 为 o_i 的竞争视野. 若 o_j C_i ,则称 o_j (j N,j i) 为 o_i 的竞争对象;若 $o_j \in C_i$,则称 $o_i(j N, j i)$ 为 o_i 的非竞争对象。

 $o_i(j N, j i)$ 落入 o_i 的竞争视野(即 o_i Ci) 需满足以下 2 个条件:

条件 $\mathbf{1}$ (非劣性) 不存在 x_{ik} x_{jk} (i,j N,ji),对 k M,且至少对一个 k 严格不等式成立; 也不存在 x_{ik} $x_{jk}(i,j)$ N,j i),对 k M,且至 少对一个 k 严格不等式成立.

条件2(相交性) \tilde{y}_i \tilde{y}_j $\mathcal{O}, \tilde{y}_i, \tilde{y}_j$ 分别为评 价对象 o_i 和 $o_i(i, i = N, i = i)$ 综合评价值的取值范 围

假设 2(竞争视野优化准则) 任一评价对象都 具有提升自身优势、降低潜在竞争对手优势的双重 目的.

 $i \ C_i = \{ o_1^{(i)}, o_2^{(i)}, ..., o_{n_i}^{(i)} \}. \ N_i = \{1, 2, ..., n_i \},$ $i = N, x_{lj}^{(i)} = x_j(o_l^{(i)}), j = M, l = N_i$. 根据假设 2,对 评价对象 $o_i(i N)$ 而言,其期望的权重 w_i^* 为如下 多目标规划模型的解:

$$\begin{cases}
\max_{j=1}^{m} x_{ij} w_{j}^{(i)}, i & N, j & M; \\
\min_{l=1}^{n_{i}} w_{l}^{(i)} & x_{lj}^{(i)} w_{j}^{(i)}, l & N_{i}; \\
\dots & \dots & \dots & \dots & \dots & \dots & \dots
\end{cases}$$

$$s.t. \sum_{j=1}^{m} w_{j}^{(i)} = 1, w_{j}^{(i)} 0, w_{i} \dots$$

其中: 为满足"权数非独裁性条件"的权重向量 wi 的约束集; $\mathbf{p}_i^{(i)}$ 为 o_i 对竞争视野 C_i 中评价对象 $o_i^{(i)}$ 的 竞争力关注系数,且满足 $\mathbf{p}_{l}^{(i)}>0$, $\mathbf{p}_{l}^{(i)}=1$; $\mathbf{p}^{(i)}=1$ $= (\mu_1^{(i)}, \mu_2^{(i)}, ..., \mu_{n_i}^{(i)})$ 为 o_i 的竞争力关注系数向量. 定义 4 设 o_i 和 $o_i^{(i)}$ $(i N, l N_i)$ 的综合评 价值取值范围分别为 $\widetilde{y}_i = [y_i^L, y_i^U]$ 和 $\widetilde{y}_i^{(i)} = [y_i^L]$

 y_{il}^{U} j_{i} \widetilde{y}_{i} $\widetilde{y}_{i}^{(i)}$ $\widetilde{y}_{i}^{(i)}$ $\widetilde{\mathcal{O}}$, 称 \widetilde{c}_{il} 为 o_{i} , $o_{i}^{(i)}$ 的竞争区间, \widetilde{c}_{il} =

 $\widetilde{\mathbf{y}}_{l}^{(i)} = [c_{il}^{L}, c_{il}^{U}];$ 称 d_{il} 为 $o_{il}, o_{il}^{(i)}$ 的竞争强度,有 $d_{il} = e(\widetilde{y}_i \quad \widetilde{y}_l^{(i)})/e(\widetilde{y}_i \quad \widetilde{y}_l^{(i)}) =$

 $(c_{il}^U - c_{il}^L)/[\max(y_i^U, y_{il}^U) - \min(y_i^L, y_{il}^L)],$

其中 e为区间宽度的计算函数. 若 $o^{(i)}$ 为 o_i 的非竞争 对象.则 $\widetilde{c_{il}} = \emptyset$, $d_{il} = 0$.

 $\mu^{(i)} = (\mu_1^{(i)}, \mu_2^{(i)}, ..., \mu_{n_i}^{(i)})$ 的确定方法如下:

Step 1: 求出 o_i 与竞争视野内各方案 $o_i^{(i)}$ 的竞争 区间 \widetilde{c}_{il} , i N, l N_i ;

Step 2: 求出 o_i 与竞争视野内各方案 $o_i^{(i)}$ 的竞争 强度 d_{il} , i = N, $l = N_{ij}$

Step 3: 将 d_{i} 归一化, 求得竞争力关注系数 μ_{i} $= du/\int_{l-1}^{\infty} du, i \qquad N, l \qquad N_i.$

为求解模型(5),考虑到多个目标之间是公平竞 争的,故可将模型(5)转化为以下线性规划问题:

$$\begin{cases} \max_{j=1}^{m} x_{ij} w_{j}^{(i)} - 2 \prod_{l=1}^{m} \mu_{l}^{(i)} x_{ij}^{(i)} w_{j}^{(i)}, \\ l N_{i}; \\ s.t. w_{j}^{(i)} 0, w_{j}^{(i)} = 1, w_{i}, \\ i N, j M. \end{cases}$$

$$(6)$$

其中: 1 为分配于"提升自身优势"目标的权系数, 2 为分配于"降低潜在竞争对手优势"目标的权系数, 且满足 1, 2 > 0, 1 + 2 = 1. 一般, 若对 2 个目标无 特殊偏好,可取 1 = 2 = 0.5.

显然,模型(6) 中目标函数总可整理成如下形 式:

$$\sum_{j=1}^{m} x_{ij} w_{j} - \sum_{l=1}^{n_{i}} \mu_{l}^{(i)} \sum_{j=1}^{m} x_{lj}^{(i)} w_{j} = \sum_{l=1}^{m} \sum_{l=1}^{n_{i}} \mu_{l}^{(i)} x_{lj}^{(i)} w_{j} = \sum_{j=1}^{m} z_{ij} w_{j}.$$
(7)

定理 4 设最优解 wi* 关于 zii, zi2, ..., zim 的降 序权向量为 wi*,由式(7) 可知

$$z_{ij} = {}_{1} x_{ij} - {}_{2} \prod_{l=1}^{n_{i}} \mathsf{\mu}_{l}^{(i)} x_{lj}^{(i)}, l N_{i}, j M,$$

则对模型(5) 有如下结论成立:

1) 若 为"弱权数非独裁性条件"的权重向量 约束集.则

$$\mathbf{w}_{i}^{*} = (0.5, 0.5 - (m - 2)0.5^{m-1}, \\ 0.5^{m-1}, \dots, 0.5^{m-1}):$$

2) 若 为"强权数非独裁性条件"的权重向量 约束集.则

$$\underline{\mathbf{w}}_{i}^{*} = (0.5, 0.5^{2}, ..., 0.5^{m-2},$$

$$0.5(1 - \sum_{j=1}^{m-2} 0.5^{j}), 0.5(1 - \sum_{j=1}^{m-2} 0.5^{j})).$$

将 z_{i1} , z_{i2} , ..., z_{im} 看成是对 o_i 变换后的指标值, 由定理 2 和定理 3 很容易得出定理 4 的结论,证明 略

对于任一评价对象 oi, 通过模型(6) 解得一个 oi 期望的最优(降序) 权向量 $w_i^*(w_i^*)$,代入式(4),可 得评价对象 $o_1, o_2, ..., o_n$ 关于 o_i 的综合评价值向量 $y^{(i)}, y^{(i)} = (y_1^{(i)}, y_2^{(i)}, ..., y_n^{(i)})^T, i \exists y_k^{(i)} = y_{ki}(k, i)$ N),因而有评价值矩阵

$$Y = (y^{(1)}, y^{(2)}, ..., y^{(n)}) = [y_{ij}]_{n \times n} = \begin{bmatrix} y_{11} & y_{12} & ... & y_{1n} \\ y_{21} & y_{22} & ... & y_{2n} \\ ... & ... & ... & ... \\ y_{n1} & y_{n2} & ... & y_{nn} \end{bmatrix}$$

以下讨论如何由评价值矩阵 Y得出综合评价结 $\hat{\mathbf{v}}_{\mathbf{v}}^* = (y_1^*, y_2^*, ..., y_n^*).$ 一般,对于 n 个综合评价 值向量 y⁽ⁱ⁾,可运用组合评价方法^[2,8,9] 得到 y^{*}.

本文给出另一种由 Y到 y * 的集结思路:寻找与 向量 v⁽¹⁾, v⁽²⁾, ..., v⁽ⁿ⁾ 夹角之和最小的向量作为最 终的评价结论 v*.

易知, y* 为如下规划问题的最优解:

max
$$\int_{i=1}^{n} [y^{T} y^{(i)}]^{2}$$
,
s.t. $y_{2} = 1$. (8)

式(8) 的求解与文献/10/中探讨的问题有着共 同的数学背景,这里直接给出已证明的结论.

定理 5^{/10/} 对于 ∀y

$$\max_{\mathbf{y}} \sum_{j=1}^{n} [\mathbf{y}^{T} \mathbf{y}^{(i)}]^{2} = \sum_{j=1}^{n} [(\mathbf{y}^{*})^{T} \mathbf{y}^{(j)}]^{2} = \max.$$

其中: max 为实对称矩阵 YYT 的最大特征根, Y = (y⁽¹⁾,y⁽²⁾,...,y⁽ⁿ⁾),y^{*}为 max 对应于 YY^T 的正特征 向量,且 y^{*} 2 = 1.

2.3 决策步骤

上述决策方法的算法步骤如下:

Step 1: 确定决策规则, 对"弱权数非独裁性条 件"或"强权数非独裁性条件"二中选一:

Step 2: 由推论 1(或推论 2) 求得 o_i(i N) 的 综合评价值的取值范围 \tilde{v}_i :

Step 3: 根据定义 3, 求出 $o_i(i N)$ 的竞争视野 C_i ;

Step4: 由定义 4, 求得 oi 与竞争视野中各评价 对象 $o_{i}^{(i)}$ 的竞争强度 d_{ii} , $i = N_{i}$, $l = N_{i}$;

Step 5: 求得 o_i 与竞争视野中各评价对象 $o_i^{(i)}$ 的 竞争强度 d_{il} , i = N, $l = N_i$;

Step 6: 求得竞争力关注系数向量 $\mu^{(i)} = (\mu_i^{(i)}, \mu_i^{(i)})$ $\mu_{2}^{(i)}, ..., \mu_{n_{i}}^{(i)}$),设定目标权系数 1和 2,构造规划问 题(6):

Step7: 根据定理 4, 求解规划问题(6), 得到 $\mathbf{w}_{i}^{*}(\mathbf{g} \mathbf{w}_{i}^{*}), i = N,$ 将评价数据矩阵 A和 $\mathbf{w}_{i}^{*}(\mathbf{g} \mathbf{w}_{i}^{*})$ 代入式(4),得到 $Y = (y^{(1)}, y^{(2)}, ..., y^{(n)})$;

Step8: 构造规划问题(8),根据定理5 求解式 (8),得到最终的评价结论 y*,并依据 y* 对评价对 象 01,02,...,03 进行排序比较分析.

应用算例 3

选用文献/2/中关于购买战斗机的例子. 对该 离散方案决策问题的描述如表 1 所示,决策的目的 是依据最大速度、飞行范围等 6 个指标 (其中"购买 费用"为极小型指标)对6种飞机的综合性能进行 排序.

表 1 决策原始数据表

属性	最大速度	飞行范围	最大负荷	购买费用	可靠性	灵敏度
01	2	1 500	20 000	5.5	5	9
02	2.5	2 700	18 000	6.5	3	9
03	1.8	2 000	21 000	4.5	7	7
04	2. 2	1 800	20 000	5	5	5
05	2. 1	2 100	19 750	5.3	6	6
06	2. 3	2 300	20 800	5.2	6	8

注: 为将情况讨论得更加全面,表中增加了两种战斗机选择 方案 05 和 06.

用"极值处理法"对原始数据进行规范化,可得 A =

0. 286	0	0.667	0.5	0.5	1	
1	1	0	0	0	1	
0	0.417	1	1	1	0.5	
0. 571	0. 25	0.667	0.75	0.5	0	•
0. 429	0.5	0.583	0.6	0.75	0. 25	
0. 714	0.667	0. 933	0.65	0.75	0.75	

按照2.3节中给出的决策步骤求解该多属性决 策问题. 限于篇幅, 计算过程略.

选定"强权数非独裁性条件"并取目标权系数 $x_1 = x_2 = 0.5$,通过计算,可求得 $a_1, a_2, ..., a_n$ 竞争 视野下的综合评价值矩阵为

 $Y = [y_{ij}]_{6 \times 6} =$

其中 yij 为 oi 竞争视野下 oj 的综合评价值.

由定理 5, 可得最终评价结论 y* = [0.3435, $0.2686, 0.5081, 0.3477, 0.3907, 0.52741^{T}$. 因 而, 评价对象的排序为 $\alpha > \alpha > \alpha > \alpha > \alpha > \alpha$

为进一步分析,将综合评价值矩阵 Y中各列的

元素转化为序值,如表2所示.

表 2 多种竞争视野下的排序结果

			竞 争	视	野		
	01	02	03	04	05	06	综合排序
01	2 *	6	5	5	5	5	5
02	4	1 *	6	6	Λ 6	6	6
03	3	4	1 *	1	1	2	2
04	6 🔾	5	4	3 *	4	3	4
05	5	3	3	4	3 *	4	3
06	\/_1\\	2	2	2	2	1 *	1

注: 带"*"的数据为每行最小值.

分析表 2 中的数据,可得如下结论:

- 1) 每个评价对象在各自的竞争视野下体现了 "增强自身优势"的目的,达到了各自最高的排名:
- 2) 根据竞争强度的不同,每个评价对象都不同 程度地体现了"弱化对手优势"的目的(50)竞争强 度最大的前两位评价对象无一例外地排在 o_i 之后, 并且都没超过综合排序中的名次).

同理, 当选取"弱权数非独裁性条件"进行分析 时,也有上述类似的结论.

结 论

本文提出了"自主式决策"的新模式,并着重研 究了一种客观的自主式决策方法. 该方法建立于 2 个合乎情理的假设之上,具有以下几个主要特点:

- 1) 除准则选取外,几乎不需决策者提供偏好信 息,大大降低了决策的复杂性:
- 2) 模拟"经济人"的行为,将所有评价对象平等 地视为具有"突出自身优势、弱化对手优势"的"智能 体",易让决策者接受,并确保了决策过程的公平性;
- 3) 能得到较为丰富的评价信息,使评价对象更 为全面地把握自身在竞争中的位置:
- 4) 计算过程简洁直观,避免了求解多个目标规 划模型的困难.

参考文献(References)

- [1] Saaty T L. The analytic hierarchy process [M]. New York: Mc Graw-Hill, 1980.
- [2] Hwang C L, Yoon K. Multiple attribute decision making[M]. Berlin: Springer-Verlag, 1981.
- [3] Hwang C L, Lin M J. Group decision making under multiple criteria: Methods and applications[M]. Berlin: Springer, 1987.
- [4] 陈珽. 决策分析[M]. 北京:科学出版社, 1987. (Chen Ting. Decision analysis [M]. Beijing: Science Press, 1987.)
- [5] Gregory A J, Jackson M C. Evaluation methodologies: A system of use[J]. J of Operational Research, 1992, 43(1): 19-28.

(下转第 1268 页)

- Electronics and Communications, 2005, 59 (2): 111-
- [5] 陈国良, 王煦法, 庄镇泉, 等. 遗传算法及其应用[M]. 北京: 人民邮电出版社, 1996. (Chen Guo-liang, Wang Xu-fa, Zhuang Zhen-quan, et al. Genetic algorithm and applications [M]. Beijing: Post and Telecom Press, 1996.)
- [6] 丁永生,任立红.人工免疫系统:理论与应用[J]. 模式识别与人工智能,2000,13(1):52-59.

 (Ding Yong sheng, Ren Li-hong. Artificial immune system: Theory and applications [J]. Pattern Recognition and Artificial Intelligence, 2000, 13(1):52-59.)
- [7] De Castro L N, Von Zuben F J, et al. Learning and optimization using the clonal selection principle [J].

- IEEE Trans on Evolutionary Computation, Special Issue on Artificial Immune Systems, 2001, 6(3): 239-251.
- [8] 黄席樾,张著洪,胡小兵,等. 现代智能算法理论及应用[M]. 北京:科学出版社,2005.
 (Huang Xi-yue, Zhang Zhu-hong, Hu Xiao-bing, et al. Theory and application of modern intelligent algorithm [M]. Beijing: Science Press, 2005.)
- [9] De Castro L N, Timmis J. An artificial immune network for multi-modal function optimization [C]. Proc of the IEEE Congress on Evolutionary Computation. Honolulu, 2002: 699-704.
- [10] Karaboga N, Cetinkaya B. Design of minimum phase digital IIR filters by using genetic algorithm[C]. Proc of the 6th Nordic Signal Processing Symposium. Espoo, 2004: 29-32.

(上接第 1263 页)

- [6] Smith M F. Evaluation: Review of the past, preview of the future[J]. Evaluation Practice, 1994, 15 (2): 215-227.
- [7] 余雁,梁樑. 基于 Nash 均衡约束的竞争性评估方法研究[J]. 管理科学学报, 2006, 9(1): 8-13.

 (Yu Yan, Liang Liang. Study of competitive assessment
 - approach based on restriction of Nash equilibrium[J]. J of Management Science in China, 2006, 9(1): 8-13.)
- [8] 郭亚军, 易平涛. 一种基于整体差异的客观组合评价方法[J]. 中国管理科学, 2006, 14(3): 60-64. (Guo Ya-jun, Yi Ping-tao. Whole diversity-based reasoning for objective combined evaluation[J]. Chinese

- J of Management Science, 2006, 14(3): 60-64.)
- [9] 易平涛, 郭亚军. 双方冲突特征下多评价结论协商组合方法[J]. 系统工程理论与实践, 2006, 26(11): 63-72. (Yi Ping-tao, Guo Ya-jun. A method of multi-evaluation conclusions bargaining combination under the feature of conflict [J]. System Engineering Theory and Practice, 2006, 26(11): 63-72.)
- [10] 邱菀华. 群组决策特征根法[J]. 应用数学和力学, 1997, 18(11): 1027-1031.

 (Qiu Warrhua. An eigenvalue method on group decision [J]. Applied Mathematics and Mechanics, 1997, 18(11): 1027-1031.)

第19届中国过程控制会议征文通知

第 19 届中国过程控制会议是中国自动化学会过程控制专业委员会主办、北京化工大学承办、北京自动化学会和控制工程编辑部协办的全国性学术会议.会议拟定于 2008 年 7 月下旬在北京召开.大会组委会现向全国同行发出会议通知,谒诚欢迎各位专家、学者、研究生踊跃投稿.

征文范围及投稿要求请登录会议网站 http://cpcc2008.buct.edu.cn