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摘要:当考虑级联系统稳定性时,一般都需要系统满足局部或者全局Lipschitz连续性条件.与已有文献中的结果
不同,本文给出了一种处理满足非Lipschitz连续条件下级联系统的稳定性分析方法. 首先,基于积分输入状态稳定
的定义,给出了级联系统全局稳定的Lyapunov形式条件.基于此,继续讨论了非Lipschitz连续情况下级联系统的有
限时间稳定性. 然后,利用上述稳定性分析结果,讨论了一类驱动子系统具有上三角结构的级联系统的控制设计问
题.最后,给出几个例子验证了上述结果的有效性.
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Stability of non-Lipschitz continuous cascaded systems and
its application

MA Li1, JIA Ru-ting2, DING Shi-hong1†
(1. School of Electrical and Information Engineering, Jiangsu University, Zhenjiang Jiangsu 212013, China;
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Abstract: The local/global Lipschitz continuity is always required when considering the stability of the cascaded sys-
tems. Being different from the exiting methods proposed in the literature, we give a method to handle the non-Lipschitz
continuous cascaded systems. By using the definition of iISS (integral input-to-state stability), the Lyapunov-like condi-
tions for global stability of non-Lipschitz continuous cascaded systems are derived. Then, based on this, the finite-time
stability for non-Lipschitz continuous cascaded systems is further studied. The stability analysis results are applied to the
control design problem for a class of cascaded systems with upper-triangular deriving subsystem. Finally, some examples
are proposed to validate the effectiveness of the proposed results.
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1 Introduction
To verify the stability of a nonlinear control system,

it is usually required to construct a Lyapunov function,
while such a kind of Lyapunov functions are not easy
to find, especially for some complex nonlinear systems.
According to [1], if we can transform the nonlinear sys-
tem into a system with cascaded structure, the controller
design and stability analysis will become much easy. In
this case, instead of looking for a Lyapunov function for
the overall system, we only need to investigate the sta-
bility properties of two subsystems separately and ex-
ploit the structure of the interconnection.

Since the cascaded design can be used to reduce

the complexity of controller design and stability analy-
sis, the research on cascaded systems has been attracted
much attention in recent years and various methods
have been proposed in the literature (see, e.g., [2–11]
and the reference therein). Among them, the representa-
tive methods can be summarized as Lyapunov method,
ISS (input to state stability, introduced in [12]) method,
passivity method, etc. The Lyapunov method has been
widely used for control design problem of cascaded sys-
tems, and tremendous results have been obtained. This
method is first applied to analyze autonomous cascaded
systems, such as [3, 7, 13]. Later, it has also been ap-
plied to global stability of non-autonomous systems in
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[10, 14].
Another effective method is the ISS theory since

it is an effective tool for verifying the boundedness of
the trajectories. It is stated in [12] that when the driv-
ing subsystem is globally asymptotically stable, the cas-
caded system is globally asymptotically stable under the
condition the driven subsystem is ISS with the states
of the driving subsystem. In [9, 15], the partial-state
feedback controllers are developed for global stabiliza-
tion of cascaded systems by utilizing ISS properties.
Later, it is pointed out in [16] that the ISS properties, to
some extent, are restrictive. To this end, the integral ISS
(iISS) property is studied for a class of nonlinear time-
invariant cascaded systems in [2, 17], and some suffi-
cient conditions for the preservation of the iISS property
under a cascaded interconnection are presented. On the
other hand, the passivity method is also an effective tool
to analyze the stability of the cascaded systems. Two
control schemes for a nonlinear system in cascade with
a linear system is derived based on passivity property
in [18] and [19], respectively. In [18], the analysis is
carried out for the case of partially linear composite sys-
tems whose linear system is relative degree one. Then
the results in [18] are generalized in [19] with the linear
system being relative degree than one.

However, as can be seen from the above literature,
all the mentioned results are based on one condition,
i.e., the local or global Lipschitz continuity of the cas-
caded systems. It should be pointed out that there are
many cascaded systems, which are not locally/globally
Lipschitz continuous. This mainly attributes to two as-
pects. On one hand, there are many non-Lipschitz con-
tinuous dynamic systems, such as the frequencies of
the oscillators considered in [20], which is apparently
non-Lipschitz continuous when using cascaded method
to test stability. On the other hand, to improve the
disturbance rejection property, the non-smooth terms
are always introduced in the controller, such as in [8].
In this circumstance, the closed-loop cascaded sys-
tems are also non-Lipschitz continuous. For the above
mentioned non-Lipschitz continuous cascaded systems,
the existing methods only for locally/globally Lipschitz
continuous systems can not be applied directly to con-
trol design or stability analysis problems.

In this paper, we will propose a method to deal
with the stability analysis problem for a class of non-
Lipschitz continuous cascaded systems. By imposing
the iISS assumption on the driven subsystem, sufficient
conditions are derived to ensure the global asymptotic

stability of the cascaded systems. Then, we also show
that the cascaded system is globally finite-time stable
if the zero dynamics of the driven subsystem and the
driving subsystem are globally finite-time stable. Mean-
while, based upon the homogeneous theory[21], the pro-
posed results are applied to stabilize a class of cascaded
system with the driving subsystem having an upper-
triangular structure, and show that the stabilization of
the driving subsystem implies stabilization of the whole
cascaded system.

2 Notations and definitions
Notation A continuous function f : R>0 → R>0

is of class K (f ∈ K), if it is strictly increasing and
f(0) = 0. A continuous function g : R>0 → R>0

is of class L (g ∈ L) if it is decreasing and tends
to zero as its argument tends to infinity. A function
h : R>0 × R>0 → R>0 is said to be a class KL func-
tion (h ∈ KL) if h(·, t) ∈ K for any t ∈ R>0, and
h(s, ·) ∈ L for any s ∈ R>0.

Then, we introduce the iISS definition for non-
Lipschitz continuous systems.

Consider the following nonlinear system

ẋ = f(x, u), x ∈ Rn, u ∈ Rm, (1)

where f(x, u) : Rn+m → Rn is non-Lipschitz con-
tinuous but Hölder continuous. The Hölder continuity
guarantees the existence of the solution, while it can not
guarantee the uniqueness of the solution. Note that the
conventional iISS is defined only for locally Lipschitz
continuous systems. Therefore, we can not apply the
conventional iISS to the non-Lipschitz continuous sys-
tem directly.

For system (1), we let the set U(x0) including all
the solutions denoted by x(t, x0) from the the initial
state x0 in forward time. Then by extending the iISS
definition in [22], we have the iISS definition for sys-
tem (1) as follows.

Definition 1 System (1) is said to be iISS if there
exist functions β(·, t) ∈ KL and γ1(·), γ2(·) ∈ K
such that, for all x0 ∈ Rn and u ∈ Rm, each solution
x(t, x0) ∈ U(x0) is defined for t > 0 and satisfies

‖x(t, x0)‖ 6 β(‖x0‖, t) + γ1(
w t

0
γ2(‖u(s)‖)ds).

Definition 2 It is called (α, µ)-iISS pair, if there
are a C1 positive-definite and proper Lyapunov function
V (x) : Rn → R, and two continuous positive-definite
functions α(·) and µ(·) ∈ K such that

V̇ (x)|(1) 6 −α(‖x‖) + µ(‖u‖).
According to Theorem 1 in [16], if there exists a
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(α, µ)-iISS pair for system (1), then system (1) is iISS.

3 Main results
In this paper, we consider the following cascaded

systems

ẋ = f(x, y), (2a)

ẏ = g(y), (2b)

with x ∈ Rn, y ∈ Rm and f(x, y), g(y) are Hölder
continuous in their arguments.

Regarding the state of driving subsystem (2b) as
the input of driven subsystem (2a), by Sontag’s ISS
theory[12], the cascaded system (2) is globally asymp-
totically stable if subsystem (2a) is ISS and subsys-
tem (2b) is globally asymptotically stable. It implies
ISS+GAS=GAS. However, if ISS property of driven
subsystem (2a) is relaxed to be iISS, the above prop-
erty will not hold, i.e., iISS+GAS 6= GAS. To ensure the
global stability of system (2), some additional condi-
tions are also required, such as[2, 16]. However, it can
be observed from the literature that almost all the re-
sults for system (2) including[2, 16] require that the vec-
tor fields at least should be locally Lipschitz continuity.
If the cascaded systems are not local/global Lipschitz
continuous, these methods can not be applied directly.
In this paper, we will focus on deriving some suffi-
cient conditions in terms of Lyapunov-like conditions to
guarantee the global stability of the non-Lipschitz con-
tinuous cascaded system (2).

3.1 Global asymptotical stability based on iISS
We first show that under the iISS property for sub-

system (2a), some Lyapunov-like sufficient conditions
will be proposed to guarantee the global asymptotical
stability of cascaded system (2).

Theorem 1 Assume that there is a (α, µ)-iISS
pair for subsystem (2a) and subsystem (2b) is globally
asymptotically stable. If there exist a constant k, a C1

positive-definite Lyapunov function V2(y), a continu-
ous positive-definite function ω(y) and a region Ω of
the origin such that for ∀y ∈ Ω \ {0},

V̇2(y)|(2b) 6 −ω(y), µ(‖y‖) 6 kω(y), (3)

then the cascaded system (2) is globally asymptotically
stable.

Proof Since there is a (α, µ)-iISS pair for subsys-
tem (2a), it can be concluded that there exists a proper
and positive-definite Lyapunov function V1(x) such that

V̇1(x) 6 −α(‖x‖) + µ(‖y‖). (4)

Let V (x, y) = V1(x) + 2kV2(y), k > 0 and

Q = {(x, y) : x ∈ Rn, y ∈ Ω\{0}} .

Then, by (3) and (4), we have

V̇ (x, y) 6 −α(‖x‖)− kω(y), ∀(x, y) ∈ Q.

By strong stability theorem [23], system (2a)-(2b) is lo-
cally stable. Consequently, there exists an attractive re-
gion for system (2a)-(2b), denoted by

Q1 = {(x, y)T : ‖x‖ 6 r1, ‖y‖ 6 r1, r1 > 0}.
To prove the globally asymptotic stability, we only need
to show the global attractivity.

First of all, we will prove that the states will con-
verge to the region Q1 from any initial state. Assume
that the trajectory of cascaded system (2a)-(2b) starts
from the initial state (x0, y0). Note that system (2b) is
globally asymptotically stable. It is clear that there exist
a time instant T1 and a ball of the origin denoted by

Ω1 = {y : ‖y‖ 6 r2, r1 > r2 > 0},
such that

y ∈ Ω1, ∀t > T1. (5)

Next, we show the state x will not escape to in-
finity in a finite time. Note that the state y is always
bounded. It is clear that there exists a constant γ such
that µ(‖y‖) 6 γ. Then, by (4), we have

V̇1(x) 6 µ(‖y‖) 6 γ.

Taking an integration from both sides of the above in-
equality, one has

V1(x(t)) 6 V1(x(0)) + γt, ∀t > 0. (6)

It implies that the state of system (2a) will not escape to
infinity in a finite time.

In the following, we will prove the states will fur-
ther converge to the region Q1 in a finite time. Note
from (5) that for t > T1, the state y enters and stays
in the region Ω1. In addition, by (6), we know the state
x is bounded during the time interval [0, T1]. With this
in mind, taking the derivative of V (x, y) along system
(2a)-(2b) again, we get for t > T1,

V̇ (x, y) 6
−α(‖x‖)− 2kω(y) + µ(‖y‖) 6
−α(‖x‖)− kω(y),∀(x, y) ∈ Rn ×Ω1.

This implies that there exists a time instant T2 > T1

such that for t > T2

x(t) ∈ S = {x : ‖x‖ 6 r2}. (7)

In conclusion, by (5) and (7), when t > T2, the states x

and y will converge to the region

S ∪Ω1 = {(x, y) : ‖x‖ 6 r2, ‖y‖ 6 r2} .
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Since r1 > r2, it is clear that the set S ∪Ω1 is included
in the set Q1, which also shows that the set S ∪ Ω1 is
an attractive region. Finally, the states will converge to
the origin. This completes the proof.

Remark 1 When the driven subsystem (2a) is
iISS, some results on global stability of cascaded sys-
tem (2) have already been reported in [2, 16]. However,
it can be observed that a precondition for the meth-
ods proposed in [2, 16] is the locally Lipschitz conti-
nuity. Consequently, these methods can not be applied
to the non-Lipschitz continuous cascaded system (2)
directly. As a matter of fact, when system (2) satis-
fies local Lipschitz continuity, a similar result to The-
orem 1 can be found in [2]. Under the locally Lips-
chitz continuity assumption, if we replace the condition

µ(‖y‖) 6 kω(y),∀y ∈ Ω with lim
y→0

µ(‖y‖)
ω(y)

= k, k >
0,∀y ∈ Ω, Theorem 1 will reduce to the result in [2].
In this paper, we relax the locally Lipschitz continuity
to locally Hölder continuity. Noting that local Lipschitz
continuity implies the local Hölder continuity, the result
proposed in this paper can also be applied to the system
considered in [2].

To apply Theorem 1, it is usually required to con-
struct some Lyapunov-like conditions for subsystems
(2a) and (2b). However, in many cases, it is not easy
to construct such Lyapunov-like conditions as (3) and
(4). For example, it is difficult to find a Lyapunov func-
tion for testing the following system:

ẋ1 = x2,

ẋ2 = −x
1/5
1 − x

1/3
2 ,

(8)

although it is globally asymptotically stable. To this
end, we relax the conditions given in Theorem 1 and
propose the following theorem, whose proof is the same
as that of Theorem 1.

Theorem 2 Assume that subsystem (2b) is glob-
ally asymptotically stable and there exist two C1

positive-definite Lyapunov functions V1(x) and V2(y),
a constant k > 0 and a region Ω of the origin such that
for ∀(x, y) ∈ Rn+m

V̇1(x)|(2a) 6 −ᾱ(x) + µ̄(y), (9)

and for ∀y ∈ Ω\{0}
V̇2(y)|(2b) 6 −ω̄(y), µ̄(y) 6 kω̄(y), (10)

with positive-definite function ᾱ(x) and semi-positive-
definite functions ω̄(y) and µ̄(y). Then the cascaded
system (2) is globally asymptotically stable.

The advantage of Theorem 2 lies in that the func-
tions µ̄(y) and ω̄(y) are not required to be positive def-

inite. This property leads to two advantages. Firstly,
there is no need to find a positive-definite function
to dominate the semi-positive-definite function µ̄(y),
which is required in Theorem 1. Secondly, it is not re-
quired to find the positive-definite functions V2(y) and
ω(y) to test the stability of subsystem (2b). In many
cases, we can only obtain a semi-positive-definite func-
tion ω̄(y). To this end, compared with Theorem 1, this
property allows Theorem 2 to be applied for a more gen-
eral class of cascaded systems.

On the other hand, we can observe that the exist-
ing control methods proposed in the literature lead to at
best the exponential convergence of the closed-loop sys-
tems. Compared with these existing control methods,
it has been proved in [24–26] that the finite-time con-
trol method will yield better convergence performance
and disturbance rejection property. Therefore, finite-
time control of nonlinear systems has attracted much
attention in recent years, e.g., [24, 26–28]. In this sec-
tion, based on the iISS property of driven subsystem,
we will show an interesting result on finite-time stabil-
ity for cascaded system (2).

Theorem 3 Assume that there is a (α, µ)-iISS
pair for subsystem (2a). If subsystems ẋ = f(x, 0) and
(2a) are globally finite-time stable, the cascaded system
(2) is globally finite-time stable.

Proof Note that subsystem (2a) is iISS with re-
spect to the state of subsystem (2b), and subsystem (2b)
is globally finite-time stable. Similar to the local stabil-
ity proof in Theorem 1, we know that the cascaded sys-
tem (2a)-(2b) is locally stable. Since the local stability
plus the global finite-time attractivity implies the global
finite-time stability, to prove the global finite-time of
system (2a)-(2b), we only required to prove the global
finite-time attractivity.

From the global finite-time stability of subsystem
(2b), it can be concluded that there exists a time instant
t∗1 < +∞ such that all the solutions from the initial
state y0, denoted by y(t, y0), satisfy

y(t, y0) ≡ 0, ∀t > t∗1.

In addition, consider that there is a (α, µ)-iISS pair for
subsystem (2a), which indicates there exist positive-
definite Lyapunov function V1(x), positive-definite
functions α(·) and µ(·) ∈ K such that

V̇1(x)|(2a) 6 −α(‖x‖) + µ(‖y‖).
This together with the global finite-time stability of sub-
system (2b) implies that the state x will not diverge to
infinity in a finite time. Thus, the state of subsystem (2a)
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is bounded during the time interval [0, t∗1]. As a conse-
quence, for t > t∗1, system (2a) reduces to subsystem
ẋ = f(x, 0), which is a globally finite-time stable sys-
tem. Obviously, the state x will converge to the origin
in finite time. This completes the proof of Theorem 3.

3.2 Stabilizing a class of cascaded systems
The control design problem for cascaded system

has been paid considerable attention in the literature.
Nevertheless, almost all the results are focused on the
cascaded system with a lower-triangular driving subsys-
tem. There are no results on the stabilization of cas-
caded systems with upper-triangular driving subsystem.
The reason may be that it is not easy to verify the stabil-
ity of the cascaded system with upper-triangular driv-
ing subsystem. It should be noted that there are many
dynamical systems whose driving subsystems possess
the upper-triangular structure, for example, the verti-
cal take-off landing aircraft attitude control system [29].
Consequently, it is important to consider the control de-
sign problem for cascaded system with upper-triangular
driving subsystem.

Consider the following cascaded systems described
by

ẋ = f(x, y), (11a)



ẏ1 = y2 + g1(y2, · · · , ym),
ẏ2 = y3 + g2(y3, · · · , ym),

...
ẏm−1 = ym + gm−1(ym),
ẏm = u,

(11b)

where f(x, y) and gi(yi+1, · · · , ym), i = 1, · · · ,m−1
are non-Lipschitz continuous functions. The driving
subsystem (11b) satisfies the following assumption:

Assumption 1 In a neighborhood of the origin,
the following holds

|gi(yi+1, · · ·, ym)|6 ρ(|yi+1|qi,i+1 +· · ·+|ym|qim),

i = 1, · · · ,m− 1, (12)

for positive constants ρ and qij satisfying

qij >
ri+1

rj

>0, i=1,· · ·,m−1, j = i+1,· · ·,m.

(13)

where ri > 0, i = 1, · · · ,m are defined as

r1 = 1, ri+1 = ri + τ > 0, i = 1, · · · ,m (14)

with a positive constant τ being a ratio of even and odd
numbers.

In addition, the driven subsystem (11a) satisfies the

following condition:
Assumption 2 For system (11a), there exist

positive-definite functions ᾱ(x) ∈ C0 and µ̄(y) =
O(‖y‖2rm

∆ ) 1 with

‖y‖∆ = (|y1|2/r1 + · · ·+ |ym|2/rm)1/2,

such that

V̇1(x) 6 −ᾱ(x) + µ̄(y).

By Assumption 2, it is obvious that subsystem (11a)
is iISS with respect to the state of subsystem (11b).

Different from the considered cascaded systems in
the literature, subsystem (11b) has an upper-triangular
structure. It implies the conventional control design
methods can not be applied to system (11). In this sub-
section, we will design a controller for system (11) un-
der Assumptions 1-2. Before giving the main result, we
first list the following two lemmas.

Lemma 1[30] There exist a small constant ε > 0
and gains βm > βm−1 > · · · > β1 > 0 such that the
following controller

u = um(Ym(t)) =

−βmσ
rm+1

rm (ym − um−1(Ym−1)), (15)

where

u0 = 0, ui(Yi(t))=−βiσ
ri+1

ri (yi−ui−1(Yi−1)) ,

i = 1, · · · ,m− 1,

σ(y) =
{

εri sgn y, for |y| > εri ,

y, for |y| 6 εri

globally stabilizes system (11b).
Remark 2 Since τ is a ratio of an even integer and

an odd integer, the parameters ri in controller (15) have
to be ratio of positive odd integers. As a matter of fact,
similar to [4], we can extend τ to be any real number
and relax this restriction by defining

< · >α= sgn(·)| · |α, α > 0. (16)

Then controller (15) can be rewritten as

u = −βm < σ(ym − um−1(Ym−1)) >
rm+1

rm .

Lemma 2[31] Suppose that the positive-definite
function ν(x) : Rn → R is homogeneous of degree r

with respect to the dilation (r1, · · · , rn). If the positive-
definite function ψ(x) : Rn → R is also homogeneous
of degree r with respect to the dilation (r1, · · · , rn),
then there exist positive constants c̄ and c such that
cψ(x) 6 ν(x) 6 c̄ψ(x).

Then, we have the following theorem.
Theorem 4 Under Assumptions 1–2, controller

1b(x)=O(a(x)) means there exists positive constant c such that lim
x→0

b(x)
a(x)

= c
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(15) globally stabilizes cascaded system (11).

Proof Note that Assumption 2 implies condition
(9). Then, by Lemma 1, it is clear that the closed-loop
system (11b)(15) is globally asymptotically stable. Ac-
cording to Theorem 2, to prove the global asymptotical
stability of the closed-loop cascaded system (11)(15),
we only need to show condition (10).

Let the candidate Lyapunov function as

V2(y) =
r1

2rm − τ
ξ

2rm−τ
r1

1 +
r2

2rm − τ
ξ

2rm−τ
r2

2 +

· · ·+ rm

2rm − τ
ξ

2rm−τ
rm

m . (17)

with

y∗1 = 0, ξ1 = y1, y∗i = −βi−1ξ
ri

ri−1
i−1 ,

ξi = yi − y∗i , i = 2, · · · ,m.

According to Lemma 2.1 in [30], with a proper selection
of βi’s satisfying βm > βm−1 > · · · > β1, the deriva-
tive of Lyapunov function V2(y) along the trajectory of
the multiple integrators

ẏ1 = y2, · · · , ẏm = u (18)

yields

V̇2(y) 6 −(ξ2rm/r1
1 + · · ·+ ξ

2rm/rm−1
n−1 + ξ2rm/rm

m ).
(19)

By (17) and (19), the derivative of V2(y) along sys-
tem (11b) under controller (15) is

V̇2(y) 6− (ξ2rm/r1
1 + · · ·+ ξ

2rm/rm−1
m−1 + ξ2rm/rm

m )+

W1(y)g1(·) + · · ·+ Wm−1(y)gm−1(·),
(20)

where Wi(y) =
∂V2(y)

∂yi

, i = 1, · · · ,m − 1. By ho-

mogeneous definition[21], it is easy to verify for i =
2, · · · ,m,

y∗i (ε
r1y1, · · · , εri−1yi−1) = εriy∗i (y1, · · · , yi−1)

and

V2(εr1y1, · · · , εrmym) = ε2rm−τV2(y).

In addition, we can also verify that

ξi(εr1y1, · · · , εriyi) = εriξi(y1, · · · , yi),

Wi(εr1y1, · · · , εrmym) = ε2rm−τ−riWi(y).
(21)

Meanwhile, according to Assumption 1, one obtains

|gi(yi+1, · · · , ym)| 6
ρ(|yi+1|

ri+1
ri+1 + · · ·+ |ym|

ri+1
rm )×

(|yi+1|qi,i+1− ri+1
ri+1 + · · ·+ |ym|qim− ri+1

rm ).

Denote

ρ1(y) = ξ
2rm
r1

1 + · · ·+ ξ
2rm

rm−1
m−1 + ξ

2rm
rm

m ,

ρ2(y) = W1(y)(|y2|
r2
r2 + · · ·+ |ym|

r2
rm ) + · · ·+

Wm−1(y)|ym|
rm
rm .

Taking (21) into account, we can easily verify that both
ρ1(y) and ρ2(y) are homogeneous of degree r = 2rm

with respect to the dilation (r1, · · · , rm). By Lemma
2, it can be concluded that there exists a positive con-
stant c̄ such that ρ2(y) 6 c̄ρ1(y). With the help of this
relation, (20) becomes

V̇2(y) 6

ρρ2(y)
m−1∑
i=1

(|yi+1|qi,i+1− ri+1
ri+1 + · · ·+

|ym|qim−ri+1
rm )− ρ1(y) 6

c̄ρρ1(y)
m−1∑
i=1

(|yi+1|qi,i+1−ri+1
ri+1 + · · ·+

|ym|qim−ri+1
rm )−ρ1(y). (22)

Note from (13) that qij >
ri+1

rj

. So we can find a

region

Ω0 = {y : V2(y) 6 λ0},

with λ0 > 0 such that for all y ∈ Ω0,
m−1∑
i=1

(|yi+1|qi,i+1− ri+1
ri+1 +· · ·+|ym|qim− ri+1

rm ) 6 1/(2c̄ρ).

By (22), it can be clearly seen that for all y ∈ Ω0,

V̇2(y) 6 −ρ1(y)/2. (23)

From Assumption 2, we know µ̄(y) = O(‖y||2rm

∆ ) as
y converges to zero. It implies there exists a constant
č > 0 such that

lim
y→0

µ̄(y)
‖y‖2rm

∆

= č. (24)

Note that ‖y‖2rm

∆ is homogeneous of degree r = 2rm.

By Lemma 2 again, we get that there exist positive
constants c̄ and c such that ‖y‖2rm

∆ > cρ1(‖y‖) and
‖y‖2rm

∆ 6 c̄ρ1(‖y‖). It implies there exists ĉ > 0 such
that

lim
y→0

‖y‖2rm

∆

ρ1(y)
= ĉ. (25)

It can be concluded that there exists a region Ω ⊂ Ω0

of the origin such that for ∀y ∈ Ω,
{‖y‖2rm

∆ 6 2ĉρ1(y) = 4ĉρ̄1(y),

V̇2(y) 6 −1
2
ρ1(y) = −ρ̄1(y).

(26)

Combining Assumption 2 and (26), it can be concluded
from Theorem 2 that the closed-loop system (11),(15)
is globally asymptotically stable.

Remark 3 It should be pointed out that Theorem
4 is partially motivated by [4]. However, there are two
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main differences between [4] and this paper. The first
one is that the driving subsystems are different. It can be
clearly observed that the driving subsystem of the con-
sidered cascaded system in [4] has a lower-triangular
structure, while the driving subsystem of the system
considered in this paper is an upper-triangular system.
The second one is that the assumptions for the driven
subsystems are different. The former one is based upon
the homogeneous assumption, and the latter one takes
the iISS property as the precondition.

4 Illustrative examples
In this section, we will give four examples to show

the effectiveness of the above mentioned results.
First of all, an example will be proposed to illus-

trate Theorem 1. Similar to [2], the Lyapunov function
V2(y) in Theorem 1 is not required to be differential in
the origin. This brings some flexibility in stability anal-
ysis, which can be reflected in the following example.

Example 1 Consider the following system{
ẋ1 = −x1 + x1y

1/3
1 ,

ẏ1 = −y
3/5
1 .

(27)

Firstly, it can be verified that the subsystem ẏ1 = −y
3/5
1

is globally asymptotically stable. Choose V1(x1) =
1
2
ln(1 + x2

1) and V2(y1) =
3
2
y

2/3
1 . Taking derivatives

of V1(x1) and V2(y1) along system (27) yields

V̇1(x1) =
−x2

1 + x2
1y

1/3
1

1 + x2
1

6 −x2
1

1 + x2
1

+ |y1|1/3

and

V̇2(y1) = −y
4/15
1 .

Note that 4/15 < 1/3. We conclude that there exists a
small region {y1 : ‖y1‖ 6 1} such that y

4/15
1 > y

1/3
1 .

According to Theorem 1, the cascaded system (27) is
globally asymptotically stable.

Then, we will give an example to verify Theorem 2.
Example 2 Consider the following system

ẋ1 = − arctan(x1) + x1y
5/3
2 , (28a){

ẏ1 = y2,

ẏ2 = −y
1/5
1 − y

1/3
2 .

(28b)

Usually, it is not easy to find the proper positive-
definite fucntions V2(y) and ω(y) to test the global
asymptotic stability of the driving subsystem (28b), al-
though it is globally asymptotically stable. Therefore,
Theorem 1 can not be used to handle cascaded system
(28). However, we can show in the sequel that the sta-
bility analysis of cascaded system (28) is solvable by
Theorem 2.

Let V1(x1) =
1
2
ln(1 + x2

1) and V2(y1, y2) =
5
6
y

6/5
1 +

1
2
y2
2. Taking the derivative of V1(x1) along

the driven subsystem (28a) yields

V̇1(x1) =
−x1 arctan(x1) + x2

1y
5/3
2

1 + x2
1

6

−ᾱ(x) + µ̄(y), (29)

with ᾱ(x) =
x1 arctan(x1)

1 + x2
1

and µ̄(y) = |y2|5/3. In

addition, we also have for ∀y ∈ R2,

V̇2(y) = y
1/5
1 y2 + y2(−y

1/5
1 − y

1/3
2 ) =

−y
4/3
2 = −ω̄(y), (30)

with ω̄(y) = y
4/3
2 . Note that the driving subsystem

(28b) is globally asymptotically stable. By letting Ω =
{y : ‖y‖ 6 1}, it is clear that

ω̄(y) > µ̄(y), ∀y ∈ Ω.

Till now, we have verified the sufficient conditions pro-
posed in Theorem 2. According to Theorem 2, cascaded
system (28) is globally asymptotically stable.

The following example shows how to verify the
finite-time stability of a cascaded system by Theorem3.

Example 3 Consider the following academic ex-
ample {

ẋ1 = x2 − x
1/3
1 + x2y1,

ẋ2 = −x1 − x
1/3
2 ,

(31a)

ẏ1 = −y
3/5
1 . (31b)

By choosing V1(x1, x2) =
1
2
ln(1 + x2

1 + x2
2), we have

V̇1(x1, x2)|(31a) =− x
4/3
1 + x

4/3
2

1 + x2
1 + x2

2

+
x1x2y1

1 + x2
1 + x2

2

6

− x
4/3
1 + x

4/3
2

1 + x2
1 + x2

2

+ y1.

It follows that the driven subsystem (31a) is iISS. In ad-

dition, taking V0(x1, x2) =
1
2
(x2

1 + x2
2) and V2(y1) =

1
2

y2
1, according to the finite-time Lyapunov theory in

[24], it is easy to verify that subsystem

ẋ1 = x2 − x
1/3
1 ,

ẋ2 = −x1 − x
1/3
2 ,

and (31b) are globally finite-time stable. By Theorem
3, cascaded system (31) is globally finite-time stable.

Finally, we show how to use Theorem 4 to design a
controller for a cascaded system with upper-triangular
driving subsystem.

Example 4 Consider the following system
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ẋ1 = −x2 − x1 + x

1/3
1 y2

3,

ẋ2 = x1 − x
5/3
2 + x2y

4
2,

(32a)





ẏ1 = y2 + y2
2 + y

2/3
3 ,

ẏ2 = y3,

ẏ3 = u.

(32b)

Let τ = 2. It yields r1 = 1, r2 = 3, r3 = 5, r4 = 7.

By taking q12 = 3/2 > r2/r2 = 1, q13 = 2/3 >

r2/r3 = 3/5, one can easily verify that Assumption 1
holds. Then, the controller can be designed as

u = −β3σ
7
5 (y3 + β2σ

5/3(y2 + β1σ
3(y1))). (33)

In addition, let V1(x1, x2) =
1
2
ln(1 + x2

1 + x2
2). Tak-

ing the derivative of V1(x1, x2) along subsystem (32a)
yields

V̇1(x1, x2) =
−x2

1 − x
8/3
2 + x

4/3
1 y2

3 + x2
2y

4
2

1 + x2
1 + x2

2

6

− x2
1 + x

8/3
2

1 + x2
1 + x2

2

+ y4
2 + y2

3.

Let ᾱ(x) =
x2

1 + x
8/3
2

1 + x2
1 + x2

2

, µ̄(y) = y4
2 + y2

3. Note that

‖y‖∆ = (|y1|2/r1 + |y2|2/r2 + |y3|2/r3)1/2 =

(|y1|2 + |y2|2/3 + |y3|2/5)1/2.

It can be easily verified that µ̄(y) = O(‖y‖6
∆), which

implies Assumption 2 holds. By Theorem 4, we con-
clude that system (32) can be globally stabilized by con-
troller (33).

5 Conclusion
This paper has studied the stability analysis prob-

lem for a class of non-Lipschitz continuous cascaded
systems. During the stability analysis, the iISS prop-
erty of the driven subsystem plays an important role.
It has been shown that the iISS of the driving sub-
system, global stability of the driving subsystem plus
a matching condition imply the global stability of the
non-Lipschitz continuous cascaded systems. Further-
more, a special case of global stability, i.e., the finite-
time stability for the non-Lipschitz continuous cascaded
system are also studied. Finally, as an application, the
control design problem for a class of cascaded system
with driving subsystem being upper-triangular structure
has been presented.
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