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Abstract: This paper is intended to give an explicit expression for minimum-phase/ all-pass factorization of any detectable
and left invertible multivariable nonminimum phase system. We show that the all-pass part is the inverse of a generalized inter-
actor matrix which corresponds to the unstable invariant zeros of the system. Thus the explicit expression is obtained by directdly

calculating the generalized interactor matrices. Since our method is a transfer function approach, it can be considered as the

complementary to existing state-space approaches.
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1 Introduction

It is well known that the minimum-phase/all-pass fac-
torization has played an important role in network and
system theory. Since this factorization is dual to the so-
called inner-outer factorization, it can also be widely
used in H.,/H, optimization'"! .

The common features of the existing inner-outer fac-
torization methods!!~%! or the minimum-phase/all-pass
factorization methods!” %! are that the factorizations are
expressed in state-space formulas, and either algebraic
Riccati equation or Lyapunov equation must be solved.
Since the factorization itself is a frequency domain prob-
lem, there has arisen a question as to whether the explic-

it expression can be found by directly manipulating the

system transfer matrix. This paper attempts to answer
this question and our result is based on the concept of
generalized interactor matrix which has been further de-
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veloped by Mutoh et all’®'. We show that the all-pass
part is in fact the inverse of a right generalized interactor
matrix which corresponds to the unstable zeros of the
system. Thus the explicit expression is found by directly
calculating the generalized interactor matrix. Due to the
limitation of the space, we only consider the minimum-
phase/all-pass factorization of left invertible nonmini-
mum-phase systems which may have infinite zeros or
jw-axis zeros. However, our method can also cope with
right invertible systems. A dual result of this paper is the
explicit expression for inner-outer (or inner-co-outer)
factorization of the systems which may have jw- axis ze-
ros and infinite zeros. Since our method is a transfer
function approach, it can be considered as the comple-
mentary to existing state-space approaches.

Throughout the paper,we use [ *] and (*) to denote the
polynomial matrix and the rational matrix respectively.
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2 Problem statement
Given any detectable and left invertible nonminimum
phase systemS (A, B, C, D) with transfer matrix G(s)
£ = Ax + Bu, y = Cx + D, (2.1a)
G(s) = C(sI -A)'B+D, (2.1b)
where x € B",y € ®,u € R™, and B, C are full
rank. The purpose of this paper is to find an explicit ex-
pression for the following minimum-phase-image/all-
pass factorization of the system:
G(s) = G, (s)V(s), V(s)VI(-3s) =1,
(2.2)
where G,,(s) is called the minimum-phase-image of 2 ,
and can be realized as 5,,(A,Bn,C,D,). V(s) is
square, stable, biproper and all pass.
3 Nilpotent interactor and generalized
interactor
Due to the definition of left nilpotent interactor ma-
trix[ 1] , a right nilpotent interactor matrix is defined as
follows
Definition 3.1 For any proper and full rank trans-
fer matrix G(z) € RP*™, any polynomial matrix L[ z]
€ R™ ™ with the following properties will be called a
right nilpotent interactor matrix of G(z).

limé(z)z[z] =M, (3.1)
where M is a full rank real matrix, and
det(L[z]) = <, (3.2)

where ¢ is a constant.

A right nilpotent interactor matrix can be found using
the duality of the algorithm proposed in [12]. The defi-
nition of the nilpotent interactor matrix implies the fol-
lowing lemma'?) .

Lemma 3.1 For any proper and left invertible
transfer matrix G (z) € IRP*™ with right nilpotent inter-
actor matrix L[ z],

degldet(L[z])} = p,
where p is the total number of infinite zeros of G(z) ,
or the lowest relative degree of m x m minors of G(z).

Like the definition of the interactor matrix which ex-
tracts infinite zeros from G(s), it is also possible to de-
fine a generalized interactor matrix which extracts all the
invariant unstable zeros and jw zeros from G(s)!'"). In
the following, we will give the definition of a right gen-
eralized interactor matrix .

(3.3)

Definition 3.2 For the system (2.1) with the set
of jw-axis zeros and unstable zeros {sy,sz,"",s4} not
necessarily distinct, any biproper matrix L(s) € R"™*"™
with the following properties will be called a right GIM
(generalized interactor matrix) of G(s) (comparing
with the definitions made in [11], the generalized inter-
actor matrix defined here does not extract the infinite ze-
ros of G(s)).

1) Satisfying

!_i’nJ)G(s)L(s) =A;, i=1,,d, (3.4)
where A; is a full rank real matrix.

2) The zeros of L(s) are in LHP.

3) The poles of L(s) are 5y, 52,""",54.

To show how to calculate a GIM of G(s), we first

assume that G(s) have only one invariant zero at Re(s)

= 0. Then substituting z = :_+ £ into G(s) will trans-

51

form the zero ats = s, to a zero at z = o, so that find-
ing a GIM of G(s) is equal to finding a nilpotent inter-
actor matrix of the transformed system. When G(s) has
more than one distinct zeros at Re(s) = 0, let us denote
the set of distinct jw-axis zeros and unstable zeros of
G(s) as{sy,s9,
we can obtain

Lemma 3.2 L(s) can be calculated by the follow-
ing algorithm!'!) .

Step 1 Use

, 531 . Just as in the single zero case,

S + ay
z = ,(11)0
S — 5

(3.5)

to transform G(s) into G(z), and compute the right
nilpotent interactor of G (z) denoted as L, [ z]. Then use
(3.5) again to transform L, [ z] back to L,(s), and cal-

culate

Gi(s) o G(s)Ly(s). (3.6)
Stepi Use
z=s+ai,ai>0 (3.7)
S - 3;

A

to transform G;_,(s) into &;_;(z)(G(s) 2 Go(s),
Go(z) A G(z)), and compute the right nilpotent inter-
actor of G,_,(z) denoted as L;[ z]. Then use (3.7) a-
gain to transform ;[ z] back to L;(s), and calculate
Gi(s) & Gi_1(s)L(s). (3.8)
Repeating the above step until i = d, then we have
L(s) = Li(s)Ly(s)- Lg(s),  (3.9a)
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Gi(s) A Ga (s)Lz(s) = G(s)L(s).  (3.9b)
Remark 3.1 Since the nilpotent polynomial matix
L(z], i = 1,---,d satisfies (3.2), the transform (3.7)
implies that all the poles and zeros of L;(s) are at s; and
— a; respectively, and the algebraic multiplicity of s; as a
pole of L;(s) is equal to the algebraic multiplicity of — «;

as a zero of L;(s)["). Moreover, from Lemma 3.1, it

follows that the algebraic multiplicity of s; as a pole of
L;(s) is equal to the algebraic multiplicity of s; as an
unstable zero (or jw-axis zero) of G(s).

Remark 3.2 (3.9b) shows that all the unstable
zeros of G(s) are exactly canceled by all the poles of
L(s), thus Gz(s) and G(s) have the same pole struc-
ture (In the case when pole-zero cancellation happens,
G;(s) can still be realized with the same order as X).
Except that G(s) has zeros at s; while G3(s) has zeros
at —q; and the algebraic multiplicity of s; as a zero of
G(s) is equal to the algebraic multiplicity of — a; as a
zero of G3(s), the remaining invariant zero structures of
G(s) and G;(s) are the same. Gz(s) is minimum

phase. Moreover, since L(s) is biproper, the infinite -

zero structures of G(s) and G;(s) are the same and
G3(s) is left invertible. Therefore the generalized right
interactor matrix L(s) can be seen as a transform which
only maps the unstable invariant zeros of G(s) to the
LHP without affecting other pole-zero structures of
G(s).

Remark 3.3 The zeros of G3(s), — ay,***, — ay,
which correspond to the unstable zeros of G(s) can be at
arbitrary place in LHP.

Definition 3.3 The L(s) in Definition 3.2 will be
called a right unitary GIM, if

L(s)L™(= s) = I,. (3.10)
Usually it is difficult to find a unitary GIM. However,
the problem can be simplified if we choose a; = s; in
(3.7).

Definition 3.4 The nilpotent interactor L;[ z] in
Lemma 3.2 will be called a right unitary interactor, if

LIz]1L"[z'] = 1,. (3.11)

Lemma 3.3 Assuming that no invariant zeros of 3
lie on the jw-axis, if in Lemma 3.2, L;(s), i = 1,
---,d, is calculated by choosing o; = s; in (3.7), then
a sufficient condition for L(s) to be a unitary GIM is

that L;[ z] is a unitary interactor.
s + 5

Proof It follows from z = — and Li(s) =
Z/i[Z]that
L(-s) = Z;[_—s-*i] = L[],
- 8§ = 5
so that

L(s)LY(-s) = L[]LT[="']) = 1,, i = 1,--,d.
Therefore L(s) is a unitary GIM.

Lemma 3.3 converts the problem of finding a unitary
GIM to the problem of finding unitary interactors. As
shown in [13], for any proper and full rank transfer ma-
trix G(z), its left unitary interactor can be obtained by
using the same algorithm used for calculating nilpotent
interactor matrix''2) . Here what we need is the right uni-
tary interactor, and, this can be achieved by using the
duality between left and right interactor matrix.

Definition 3.5 The m x m first degree polynomial
matrix

X 0 ZI[‘V
U(’)[z] = [1 '], m=r+k (3.12)

r

will be called a column shift polynomial matrix (CSPM)
of order %;.

Lemma 3.4 For each G;_,(z), i = 1,",d in
Lemma 3.2, there exists a right unitary interactor matrix
i;[ z] consisting of finite ¢; factors

L[z] = $V[2]18P[2]+- 8%[2], (3.13a)

SP21a QPUP2], j=1,,1,  (3.13b)
where U[ z] is a CSPM of order &; and Q% is a m x
m unitary real matrix. U$’[z] and Q% can be calcu-
lated using the duality of the algorithm proposed in
[12].

Proof By using the duality, (3.13) can be proved
in the same way as in [ 12]. The proof consists of two
parts: first, we present an algorithm to calculate the uni-
tary interactor. Second, we show that the number of
factors in (3.13b) is finite.

Part 1 The transfer matrix &;_,(z) can always be
factored as

C,-_l(z) = D‘l[z]]_\’[z], (3.14)
where D[ z] and N[ z] are polynomial matrices which
are in the form of

D[z] o Iz"+ Dyz™ ! 4 -

+ 5,7, (3. 15a)
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N[z] & Noz™+ Niz"% - + N; (3.15b)
for some 7 and may not be coprime. Since the denomi-
nator D[ z] in (3.15) is a monic polynomial matrix, the
nilpotent interactor matrix Z;[ z] can be evaluated from
the numerator polynomial N[z], i.e.,

limD'l[z]]—V[z]ii[z] =

ETE'I[z]zﬁgez'ﬁﬁ[z]zi[z] =
zl_ig:z”ﬁ[z]i,-[z]. (3.16)

The algorithm is started by setting NO[:] = N[z]
and £,@[ 2] = I,,. Consider [th iteration in calculating
L,[z] using (3.13).

Step1 I r = rankN§"" = m, where N§'~V de-
notes the coefficient matrix of 2* in N*"Y[z], then the
algorithm terminates and the unitary interactor is Z;[ z]
= P4-D[z], andt; = 1 - 1.

If r, < m, factor N§*~V into following QR decompo-

sition form
G0 = [0, FRICQP) N, he.,  (3.17)
N§FV QO = [0, N§BI, (3.17b)

where Q¢ is an m x m unitary real matrix, k; = m -
r;, and O; is a k;-column zero matrix.
Step 2 Premultiply NY-Y[2] by matrix Q(il) and
denote it as N[z],
Nz = ND2]080. (3.18)
Now, the leading coefficient of N[z] is equal to the
right-hand side of (3.17b).
Step 3 Premultiply N[ z] by a CSPM of order k; and
set
NO[z] = NJU8P(2]. (3.19)
This multiplication shifts coefficient matrix of z" in
N[ z] forward by k; columns. Let
2&”[z] = ES“”[Z]S‘,-”[z].
And this ends the ith iteration.

Combining (3.17b) ~ (3.20), we have
NO[2] =
]_v(l—l)[z]Qsl)USl)[z] —
NU-D[2]8{P[2] = N[=]L{P[2], (3.21)

where S$P[ 2] and L{¥ [ z] are defined by (3.13b) and
(3.20).
The final iteration yields

]_V(‘-‘)[z] = N[z]z(,-‘i)[z], (3.22)

(3.20)

where L[ 2] = L;[ 2] which is defined by (3.13a).
Since rankN§% = m, property (3.1) is satisfied. Not-
ing that det (UY’[z]) = 2 and det (@) = 1, we have
property (3.2). Moreover, since UY[z]{ U¥[27']1T =
I and Q% is a unitary real matrix, it follows that Z;[z]
is a unitary interactor.

Part 2 Since G;_(z) is left invertible, it follows
from Lemma 3.1 that

13
3

degldet(L,[z])} = 20k = o,

j=1

where p; is the algebraic multiplicity of the unstable zero

(3.23)

s; . Hence, t; must be a finite number.
4 An explicit expression

For the minimum-phase/all-pass factorization, the re-
sults of Lemma 3.2 ~ 3.4 lead to the following theo-
rem.

Theorem 4.1 For the system Z(A,B,C,D) as in
(2.1) which may have infinite zeros but does not have
jw-axis zeros, let L(s) be a right unitary GIM of >
which is calculated by using Lemma 3.2 ~ 3.4, then

1) The minimum-phase/all-pass factorization is ex-

pressed as
G(s) = G,(s)V(s), V(s)V'(=s) = I,
4.1)
where
G.(s) = Ga(s), V(s) = L™ (s). (4.2)

2) G, (s) can be realized as 3,,(A4,B,,C,D,).
Proof 1) We note that all the zeros and poles of
L(s)are — sy,*, — sq and sy, sq Tespectively, it
follows from (3.9b) that Gz(s) is a minimum phase
image of G(s). Equation (3.9b) can be rewritten as
G(s) = Gi(s)L™'(s). (4.3)
L(s) being a unitary GIM implies that L~'(s) is all-
pass.
2) G(s) can be factored as
G(s) = D;'[s]N,[s], (4.4)
where N,[s], D,[s] are polynomial matrix, and
D,[s] is row reduced. Combining (4.3) and (4.4)
Gi(s) = D;l[s]Np[s]L(s). (4.5)
Since all the poles of L(s) is the unstable zeros of
N,[s], it follows that N,[s] o N,[s]1L(s) is a poly-
nomial matrix. Thus

Gi(s) = D;I[s]lvp[s] (4.6)
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is a left MFD (matrix fraction description) of Gz(s).
Comparing (4.6) with (4.4), and using the method for
observer-form realizations from left MFDs! ] | it follows
that G3(s) can be realized as 5,,(A, B,,,C,D,,).

D,, and B,, are found using the following method. -

G, (s) can be expressed as

Gn(s) = G.(s) + D, (4.7)
where G,, (s) is strictly proper. Suppose the observabili-
ty matrix ®(A, C) has rank r < n, we can find a simi-
larity transformation matrix T to transform Z(A, B, C,
D) into the following observable/unobservable form!™

A=T"'AT,B = T'B, C = CT, (4.8a)

- A, 0\ _ By\ _ -
T ) I N
n-T\Ay A4; 5
(4.8b)
where {C,,A,} is observable. Then B, may take the
form of
B, _
B, = T( 0), (4.9)
where B, satisfies
C,(sI - A,)'B, = ¢,(s). (4.10)

Equation (4.10) implies that

2 C AT Bs™ = Do ks,
where A; is th'e: 1Markov parameter'c_);' G.(s). Let
o7 = [CT,ATCT, -, (AT)1CT]. (4.12)
Therefore,
B, = (2"®)-'®"[ AT, AT, -, RTIT. (4.13)
Remark 4.1 Since the discovery of a unitary GIM
is based on finding unitary nilpotent interactor matrices,

(4.11)

the complexity of our method is largely dependent on the

algorithm to calculate the unitary nilpotent interactor ma-

trices. However, the algorithm proposed in [ 12] for
calculating the nilpotent interactor matrix is simple and
amenable to computer-based calculations because it only
carries out QR decomposition on p x m real matrices.
Moreover, since our method does not need to solve the
Riccati equation, it can be expected to have good nu-
merical reliability than existing state-space approaches.
5 Conclusions

This paper has provided an explicit expression for the
minimum-phase/all-pass factorization of any detectable
and left invertible nonminimum phase system which may

have infinite zeros or jw zeros. The novelty of our
method is that the all pass part is explicitly expressed as
the inverse of a generalized right interactor matrix of the
system. The result can also be extended to detectable
and right invertible systems. A dual result of this paper
is the inner-outer (or inner-co-outer) factorization of any
stabilizable nonminimum-phase system which is either
left invertible or right invertible and may have infinite
Zeros of jw zeros (to this end, we only need to exclude
the jw-axis zeros form the set {s,,*-,sz}). Since the
explicit expression for minimum-phase/all-pass factor-
ization is found without solving the Riccati equation, our
method is more explicit and can have better numerical
reliability than existing state-space approaches.
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