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摘要:本文研究了一类增长线性地依赖于不可测状态非线性系统的输出反馈自适应实用跟踪问题.很不同的是,
本文所研究系统的增长率是输出的未知多项式(系数未知、幂次已知),且关于被跟踪参考信号的假设相当弱(仅本
身和其导数为已知的),为解决该问题,通过灵活采用通用控制和死区的思想和方法,引入了带有新型动态增益的观
测器来重构不可测的系统状态,进而构造了自适应输出反馈跟踪控制器. 可以证明,当控制器中的设计参数适当选
取时,闭环系统所有状态有界,并且跟踪误差趋于事先给定的充分小的区域.数值仿真说明了所提方法的有效性.
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Global output-feedback tracking for nonlinear systems with
unknown polynomial-of-output growth rate

LIU Yun-gang†

(School of Control Science and Engineering, Shandong University, Jinan Shandong 250061, China)

Abstract: This paper is concerned with the adaptive practical tracking by output-feedback for a class of nonlinear sys-
tems with linearly unmeasurable states dependent growth. Quite different, the system growth rate is unknown polynomial-
of-output with given powers but unknown coefficients, and the assumption on the to-be-tracked reference signal is rather
weak (merely itself and its time-derivative are known). To solve the problem, by flexibly using the ideas and methods from
universal control and dead zone, an observer with new dynamic high-gain is first introduced to re-construct the unmea-
surable system states, and then an adaptive output-feedback tracking controller is successfully designed. It is shown that
if the design parameters in controller are suitably chosen, then all the states of the closed-loop system are bounded, and
furthermore, the tracking error will be prescribed sufficiently small when time is large enough. A numerical simulation is
also provided to demonstrate the validity of the proposed approaches.

Key words: nonlinear systems; unmeasurable states dependent growth; unknown polynomial-of-output growth rate;
global practical tracking; dynamic high-gain; output-feedback

1 Introduction and problem formulation
Global output tracking is a research issue of theoreti-

cal and practical importance, and has received much atten-
tion during last two decades for many classes of nonlinear
systems, by incorporating with adaptive technique, back-
stepping design, dead zone and output regulation theory,
among others (see e.g., [1–17], as well as the references
therein). With sufficient condition/information on nonlin-
ear systems and the reference signal to be tracked, asymp-
totic output tracking can be achieved, see, e.g., [4,8–9,11].
However, when condition/information is not sufficient, this
type of control would be very hard to achieve, even impos-
sible, and consequently, practical output tracking, which
is enough for many practical applications, is proposed
to establish a slightly more degraded control objective
than the former one; that is, the tracking error is steered

prescribed small when time is large enough, rather than
asymptotically convergent to zero. Besides, practical out-
put tracking usually needs less information than asymp-
totic output tracking, and particularly, allows the pres-
ence of many classes of unmodeled dynamics and uncer-
tainties/unknowns in the systems and the reference signal.
Mainly because of these, practical output tracking have ac-
quired much attention and is still an active area of research.

Recently, when only partial system states or output
available for feedback, some representative results have
been obtained for practical output tracking for classes of
nonlinear systems in [7, 12–13, 15, 17], not only extend-
ing the related results on stabilization, but also developing
distinct methodologies of control design and performance
analysis. More specifically, in [13], practical output track-
ing was considered for a class of stochastic nonlinear sys-
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tems. Work[7] addressed adaptive practical output tracking
(or λ-tracking) of nonlinear systems with unknown control
coefficient and the growth of polynomial-of-output multi-
plying an unknown constant, and developed the backstep-
ping design procedure. Different from [7], work[12] further
studied the systems with the dominating nonlinearities lin-
early composed by unmeasurable states with a factor of
bounded function, and presented a much simpler controller
than that in [7]. Work[15], with less information on the
reference signal than that in [7, 12], addressed the practi-
cal output tracking for nonlinear systems with higher-order
unmeasurable states dependent growth. Our work[17] al-
lows serious unknowns (i.e., unknown constant growth rate
and unknown bounds for reference signal and its deriva-
tive), and hence essentially different from work[15]. It is
worth mentioning that both in [7, 12, 17], a dead zone is
employed in the updating law in feedback design to effec-
tively restrain the bursting phenomenon, and more impor-
tantly, to directly establish the desired tracking objective.

This paper continues our investigation presented in
[17], from unknown constant growth rate to unknown
polynomial-of-output one. Specifically, the adaptive prac-
tical tracking is investigated for the following class of
single-input single-output (SISO) nonlinear systems∗:




ζ̇i = ζi+1 + φi(t, ζ, u), i = 1, · · · , n− 1,

ζ̇n = u + φn(t, ζ, u),

y = ζ1 − yr,

(1)

where n ∈ N\{1} is the system order; ζ = [ζ1 · · · ζn]T

∈ Rn is the system state with the initial condition ζ(t0) =
ζ0; u ∈ R and y ∈ R are the control input and system
output, respectively; yr : [t0,+∞) → R is the reference
signal to be tracked by the system output; functions φi :
[t0,+∞) × Rn × R → R, i = 1, · · · , n are continuous
in the first argument and locally Lipschitz in the rest two
arguments. In what follows, suppose only the system out-
put y is measurable. This means that ζ1 and yr may not
be measurable and hence the problem to be solved is dif-
ferent from those in [4, 9, 13] where yr is precisely known.
In addition, such situation is often encountered in practical
applications, as already discussed in [15]. For notational
simplicity, let t0 = 0 in the later development of the paper.

The purpose of this paper is to search for an output-
feedback controller such that the global practical tracking
problem of system (1) can be solved under the following
assumptions:

A1) There exist a known integer p ∈ N and an un-
known constant θ > 0, such that

|φi(t, ζ, u)| 6 θ(1 + |ζ1|p)
i∑

j=1

|ζi|+ θ,

for i = 1, · · · , n.
A2) The reference signal t 7→ yr(t), t ∈ R+ is contin-

uously differentiable. Moreover, there exists an unknown

constant ϑ > 0 such that

sup
t>0

(|yr(t)|+ |ẏr(t)|) 6 ϑ.

Rigorously speaking, in order to establish the tracking
objective, we will explicitly construct an adaptive output-
feedback controller for system (1) under assumptions A1))
and A2) in the following from:

χ̇ = αλ(χ, y), u = βλ(χ, y), (2)

such that
i) the solution of the resulting closed-loop system is

well-defined and globally bounded on [0,+∞);
ii) for any prescribed constant λ>0 and for any ini-

tial condition ζ0, there is a finite time Tλ > 0 such that
sup
t>Tλ

|y(t)| = sup
t>Tλ

|ζ1(t)− yr(t)| 6 λ,

where χ is the state vector with the appropriate dimension
and the initial value χ0 = χ(0), λ > 0 is used to repre-
sent the tracking accuracy, functions αλ and βλ are vector-
valued continuous and scalar continuously differentiable,
respectively, both dependent on λ. The control just formu-
lated is sometimes called λ-tracking (see e.g., [1–3,12,14]
and the references therein).

It is worthwhile to point out assumption A1) shows
that system (1) heavily relies on the unmeasurable states
and has the growth rate of polynomial-of-output multi-
plying an unknown constant (or saying unknown coeffi-
cients polynomial-of-output). This assumption also makes
system (1) is essentially different from those studied in
[12, 18–20], where the authors considered classes of non-
linear systems with another type of unmeasurable states
dependent growth, i.e., the system nonlinearities are con-
sisted of unmeasurable states multiplying an unknown con-
stant or functions satisfying some severe conditions. Be-
sides, assumption A1) clearly means that the system may
not necessarily have equilibrium points and allows the
presence of the lower-order (than 1) growing unmeasur-
able states. From these, one can see that system (1) under
assumption A1) represents a larger class of nonlinear sys-
tems and is significantly different from those in the existing
literature on tracking control (see e.g., [4, 7, 9–13, 15, 17]).
Assumption A2) shows that no more information is needed
on the reference signal yr except the existence (unneces-
sarily known) of the upper bounds of it and its derivative.
Although with the similar but slightly stronger constraints
than assumption A1), the stabilization problem has been
settled in [21–22], the practical tracking problem has re-
mained unsolved so far for system (1) under assumptions
A1) and A2). This is partially because of the weaker con-
ditions imposed on the system and reference signal. In
addition, to author’s knowledge, it seems impossible to
realize the global asymptotical tracking control (see e.g.,
[7, 12, 15–16, 21, 23–24]).

∗Throughout this paper, N = {1, 2, 3, · · · } denotes the set of all natural numbers; R denotes the set of all real numbers, R+ denotes
the set of all non-negative numbers, Rn denotes the real n-dimensional space; for any vector or matrix X , XT denotes its transpose,
and ‖X‖ (i.e., ‖X‖2) and ‖X‖∞ denote the Euclidean norm (or 2-norm) and the infinity norm (or maximum norm) for vectors, and the
corresponding induced norm for matrices, respectively; for any symmetric matrix P , λmax(P ) and λmin(P ) denote its maximum and
minimum eigenvalues, respectively.
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The paper proposes a new adaptive output-feedback
controller which successfully accomplishes the global
practical tracking objective prescribed above for system
(1). First, an appropriate high-gain observer is con-
structed, and the high-gain contains two dynamic (updated
on-line) components to compensate for the polynomial-
of-function and unknown constant in the system growth
rate, respectively (roughly speaking). Then, stimulated
by the ideas and methods from universal control and dead
zone[10, 12, 21–23], an adaptive output-feedback tracking con-
troller is successfully constructed. Most importantly, the
proof of the validness of the controller is rigorously ad-
dressed, which reveals that by a suitable choice of the
design parameters, the controller designed can guarantee
global practical output tracking, while keeping the global
boundedness of all the closed-loop system states.

The remainder of the paper is organized as follows.
Section 2 provides the design scheme for global practical
tracking control, and Section 3 summarizes the main re-
sults of the paper. Section 4 gives a numerical example,
and Section 5 addresses some concluding remarks. The pa-
per ends with an important appendix which collects rigor-
ous proofs of a crucial lemma and two fundamental propo-
sitions and obviously is an absolutely necessary part of the
paper.

2 Output-feedback tracking control design
This section is devoted to designing an adaptive

output-feedback tracking controller for system (1). First,
a dynamic high-gain observer is introduced to reconstruct
the system unmeasurable states. The novel updating laws
for the high gains, which are inspired by the idea of dead
zone and the related stabilization results, can effectively
compensate the unknowns in the system and reference sig-
nal. Then, based on the dynamic high-gain observer, an
adaptive output-feedback controller is explicitly designed
to make the tracking error prescribed small after a finite
time, while keeping the global boundedness of all the re-
sulting closed-loop system states.

From ζ1 = y + yr, and assumptions A1) and A2), we
know that, for any i = 1, · · · , n, and any t ∈ R+, ζ ∈
Rn, u ∈ R,

|φi(t, ζ, u)| 6

θ(1 + |y + yr|p)
i∑

j=1

|ζi|+ θ 6

θ(1 + 2p−1ϑp + 2p−1|y|p)
i∑

j=1

|ζi|+ θ 6

θ max{1 + 2p−1ϑp, 2p−1}(1 + |y|p)
i∑

j=1

|ζi|+ θ.

(3)

This obviously means that system (1) does not necessarily
have an equilibrium point since the presence of adding θ in
(3), and system (1) can be dominated by a system hav-
ing linearly unmeasurable states dependent growth with
the rate of polynomial-of-output multiplying an unknown
constant.

2.1 State transformation
For the convenience of control design, let’s first intro-

duce the following simple transformation:

x1 = y = ζ1 − yr, xi = ζi, i = 2, · · · , n. (4)

Then, by (1), we have



ẋi = xi+1 + ϕi(t, x, u), i = 1, · · · , n− 1,

ẋn = u + ϕn(t, x, u),
y = x1,

(5)

where x = [x1 · · · xn]T with the specified initial condi-
tion, and{

ϕ1(t, x, u) = φ1(t, ζ, u)
∣∣
(4)
− ẏr,

ϕi(t, x, u) = φi(t, ζ, u)
∣∣
(4)

, i = 2, · · · , n,

and for the simplicity of expression, variable t in ϕi’s is
used to denote all the effects caused by time t itself, the
reference signal and its first derivative. Clearly, by assump-
tion A2) and the definitions of ϕi’s, we know that ϕi’s sat-
isfy the similar relations to (3) with respect to argument x,
and therefore, the transformed system (5) has the similar
growth property to that of the original system (1).

It should be emphasized that, by introducing transfor-
mation (4), the tracking control of the original system (1)
will be solved by studying the following control design
problem of the transformed system (5): an output-feedback
controller should be designed such that all the closed-loop
system states are bounded on [0,+∞) and meanwhile the
system output is regulated into a prescribed small neigh-
borhood of the origin when time is large enough.

2.2 Output-feedback control design
This subsection is to design an output-feedback con-

troller in the form of (2) for system (5).
First, motivated by [21–22], the following state ob-

server is constructed for system (5):




˙̂xi = x̂i+1 + ri(t)li(x1 − x̂1),
i = 1, · · · , n− 1,

˙̂xn = u + rn(t)ln(x1 − x̂1),

(6)

where li’s are constants to be determined later, r(t) ,
L(t)M(t), t ∈ R+ is called dynamic gain in which L and
M satisfy the following updating laws:




L̇ = M max{0,
2(y − x̂1)2

r2a(t)
− λ2

2r(t)
+

2
n∑

i=1

x̂2
i

r2i−2+2a(t)
}, L(0) = 1,

Ṁ = −β1M
2 + β2(1 + |y|p)2M,

M(0) = 1,

(7)

with to-be-determined design parameters β1, β2 and a sat-

isfying 0 < β1 6 β2 and 0 < a <
1

10p
, respectively (p is

the same positive integer as in the assumption A2).
Thus, based on observer (6) and updating laws (7), the

output-feedback controller is designed as follows:

u = −(rn(t)k1x̂1 + rn−1(t)k2x̂2 + · · ·+ r(t)knx̂n),
(8)
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where ki’s are constants to be determined later.
As to be stated in the later Proposition 1 and Lemma

1, one can see that L(t) > 1, ∀t ∈ R+ and M(t)>1, ∀t∈
R+, and consequently r(t) > 1, ∀t ∈ R+, and therefore,
observer (6) is of the Luenberger-like one with the dynamic
high-gain r. This type of observers are more flexible than
the observers with the non-high-gain or constant-gain, and
are particularly applicable to output-feedback control de-
sign for the systems with inherent nonlinearities and un-
certainties [12, 15, 21, 24].

Roughly speaking, the components L and M of dy-
namic gain r play different important roles in realizing
global practical tracking by output-feedback. On one hand,
L will be updated large enough to compensate the bounded
unknowns/uncertainties in system (5) (or system (1)) and
the reference signal. On the other hand, the dynamic gain
M is necessary to compensate the polynomial-of-output
system growth rate.

It is worth pointing out that the particular updating law
for L is different from those in the closely related litera-
ture (see e.g., [12, 21]). This is quite important, since the
presence of dead zone in the updating law of L, ones can
finally assert the prescribed tracking objective as long as
the global stability is ensured for the closed-loop system,
as to be stated in the proof of Theorem 1. Besides, from
(8), one can know that the proposed controller is linearly
composed of the observer states and hence easy to be im-
plemented in practice. However, the subsequent treatment
indicates that the stability and tracking performance anal-
ysis for the resulting closed-loop system is rather compli-
cated (majorally due to the particular updating laws for L
and M ).

For the further treatment, define the state estimation
error x̃ = x− x̂ of the resulting closed-loop system, which
obviously satisfies





˙̃xi = −ri(t)lix̃1 + x̃i+1 + ϕi,

i = 1, · · · , n− 1,

˙̃xn = −rn(t)lnx̃1 + ϕn.

Besides, for the sake of simplicity, we introduce the fol-
lowing scaling transformations:





εi =
x̃i

ra+i−1
, i = 1, · · · , n,

ηi =
x̂i

ra+i−1
, i = 1, · · · , n,

(9)

where a is the same design parameter as in (7). Letting
ε = [ε1 · · · εn]T and η = [η1 · · · ηn]T, we have





ε̇ = r(t)Aε + f − ṙ(t)
r(t)

Daε,

η̇ = r(t)Bη + r(t)lε1 − ṙ(t)
r(t)

Daη,

(10)

where

l = [l1 · · · ln]T,

f = [
ϕ1

ra

ϕ2

ra+1
· · · ϕn

ra+n−1
]T =

[
φ1 − ẏr

ra

φ2

ra+1
· · · φn

ra+n−1
]T,

Da = diag{a, a + 1, a + n− 1},

and

A=




−l1 1 · · · 0
...

...
. . .

...
−ln−1 0 · · · 1
−ln 0 · · · 0


 , B=




0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−k1 −k2 · · · −kn


 .

3 Main results
In this section, the main contributions of the paper

will be addressed and rigorously proven. As an additional
consequence of the proofs, we will accomplish the entire
conditions on the design parameters, and will deeply
understand the necessity of the aforementioned choices/
requirements, such as, the updating laws for L and M , and

the preliminary constraints on a, β1, β2, i.e., 0 < a 6 1
10p

and 0 < β1 6 β2.
Theorem 1 Consider system (1) under the assump-

tions A1) and A2). If the design parameters li’s, ki’s, β1,
β2 and a are suitably chosen, then based on the dynamic
high-gain observer (6), the output-feedback controller (8)
guarantees that all the states of the resulting closed-loop
system are well-defined and bounded on [0, +∞), and fur-
thermore, the global practical tracking can be achieved,
i.e., for prescribed λ > 0, there exists a finite time Tλ,
such that |y(t)| 6 λ, ∀t > Tλ.

Proof In fact, in the entire proof, the design parame-
ters li, ki, i = 1, · · · , n are chosen to satisfy (A.1), and a,
β1, β2 are chosen to meet (A.6).

By (1), (5)–(8) and Statement iii) of Proposition 1
later, it is easy to verify that the right-hand side of
the resulting closed-loop system is locally Lipschitz in
(x, x̂,M,L) in an open neighborhood of the initial con-
dition, and hence the closed-loop system has a unique so-
lution on a small interval [0, tf) (see Theorem 3.1, page 18
of [25]). Let [0, Tf) be the maximal interval on which a
unique solution exists, where 0 < Tf 6 +∞ (see Theo-
rem 2.1, page 17 of [26]). As will be stated in Lemma 1
later where Tf = +∞, the closed-loop system states are
well-defined on [0,+∞).

To continue the proof, we shall need some basic prop-
erties of components L and M in dynamic high-gain r,
given in the following proposition.

Proposition 1 For system (5) and observer (6), the
dynamic gains L and M described by (7) are provided with
the following properties:

i) M(t) > 1 for any t ∈ [0, Tf);
ii) L is monotone nondecreasing on [0, Tf), and con-

sequently L(t) > 1 for any t ∈ [0, Tf);
iii) The dynamics of M and L are locally Lipschitz in

(y, M) and (y, x̂,M,L), respectively.
Proof Let’s first prove Statement (i) by a contradic-

tion argument. Otherwise, there would exist a time tM ∈
[0, Tf), at which M(tM) < 1. In fact, from (7), it can
be known that Ṁ > −β1M

2 when M > 0. This shows
that no matter what the system output y is, M(t) > 0 has
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bounded derivative in any time interval on which Ṁ 6 0
and hence is a continuous function in time on this interval.
Based on the fact and from M(0) = 1, M(tM) < 1, it is
not hard to see that there exists another time t′m ∈ [0, tM),
at which M(t′M) = 1, Ṁ(t′M) < 0, and also a sufficiently
small constant τ > 0, such that Ṁ(t) < 0 and 0 < M(t)
< 1 for ∀t ∈ (t′M, t′M + τ). However, (7) and Ṁ < 0 on
(t′M, t′M + τ) means that for ∀t ∈ (t′M, t′M + τ),M(t) >

β2(1 + |y|p)2
β1

> β2

β1
> 1, which clearly contradicts the

just established M < 1 on (t′M, t′M +τ), and consequently
Statement i) is true.

We next turn to proving the remainder two statements
of Proposition 1. First from the statement i) and (7), we
know L̇(t) > 0, ∀t ∈ [0, Tf), and hence L(t)>L(0)=1,

∀t ∈ [0, Tf). Statement ii) is thus proven. In State-
ment iii), the locally Lipschitz property of the dynamics
of M is because that it is smooth in both M and |y|,
and in addition |y| is locally Lipschitz in y. It remains
only to verify the locally Lipschitz property of the dynam-
ics of L in (y, x̂,M,L), which is true since noting State-
ments i) and ii), max{ψ, 0} is locally Lipschitz in ψ and
2(y − x̂1)2

r2a
− λ2

2r
+ 2

n∑
i=1

x̂2
i

r2i−2+2a
is a smooth function

of (y, x̂,M,L).
Before completely proving the theorem, we next pro-

vide two important propositions, which are both rigorously
proven in Appendix. Specifically, Proposition 2 character-
izes the dynamic behavior of the closed-loop system via a
Lyapunov candidate function and will play a central role
in the later analysis for stability and tracking performance.
Proposition 3 reveals the intrinsic relationship between the
high-gain L and the other system states and shows that in
order to prove the global boundedness of the closed-loop
system, it suffices to prove that of L.

Proposition 2 For the same closed-loop systems as
in Theorem 1 with the same design parameters, there exist
a known constant γ > 0, an unknown constant Θ > 0 and
symmetric positive definite matrices P and Q, such that on
[0, Tf), V (ε, z) = γV1(ε) + V2(z) := γεTPε + ηTQη

satisfies

V̇ 6 −(0.5r −Θ)(‖ε‖2 + ‖η‖2) +
Θ

r
.

Proposition 3 For the same closed-loop system as in
Theorem 1 with the same [0, Tf), then all the other system
states are bounded on [0, Tf) as well.

We can now proceed the main proof of Theorem 1 with
the help of the above Propositions 1, 2 and 3. The first
claim of the theorem is directly obtained from the follow-
ing lemma whose proof is provided in Appendix for the
sake of compactness though it is the most technical part of
the whole proof of the theorem.

Lemma 1 For the same closed-loop system as in
Theorem 1 with the same design parameters, Tf = +∞

and all the system states are bounded on [0, +∞).
It remains only to prove the global practical tracking

can be achieved, i.e., for any prescribed λ > 0, there exists
a finite time Tλ, such that |y(t)| 6 λ, ∀t > Tλ.

First, from (5)−(7), Proposition 1 and Lemma 1, we
can easily verify the following two properties:

a) L is continuously differentiable on [0, +∞) and
lim

t→+∞
L(t) = sup

t>0
L(t) exists.

b) In the expression of L̇, function

N(t) = M(
2(y − x̂1)2

r2a
− λ2

2r
+ 2

n∑
i=1

x̂2
i

r2i−2+2a
)

is continuously differentiable in time t and particularly, Ṅ
is global bounded on [0, +∞), i.e., sup

t>0
|Ṅ(t)| < +∞.

Then, from property b), it can be concluded the uni-
form continuity of L̇ on [0,+∞); that is, for any ε > 0,
there exists δ(ε) > 0, for any t1, t2 ∈ [0,+∞) satisfying
|t2 − t1| < δ, such that

|L̇(t2)− L̇(t1)| 6 ε.

In fact, if δ is chosen such that

0 < δ <
ε

max{1, sup
t>0

|Ṅ(t)|}

for any ε > 0, from property a) and the expression of L̇
(i.e., (7)), it isn’t hard to obtain

|L̇(t2)− L̇(t1)| 6
|N(t2)−N(t1)| 6 sup

t>0
|Ṅ(t)| · |t2 − t1| 6

ε sup
t>0

|Ṅ(t)|

max{1, sup
t>0

|Ṅ(t)|} 6 ε.

Keeping in mind property a) and the uniform continu-
ity of L̇, by using Barbălat’s Lemma†, we finally establish
lim

t→+∞
L̇(t) = 0. Moreover, from Lemma 1, it follows that

inf
t>0

λ2

L(t)
> 0. Therefore, from the expression of L̇, we

know that for any initial condition of the closed-loop sys-
tem, there is a finite time Tλ > 0 such that for any t > Tλ,

M(t)(
2(y(t)− x̂1(t))2

r2a(t)
− λ2

2r(t)
+

2
n∑

i=1

x̂2
i (t)

r2i−2+2a(t)
) 6 inf

τ>0

λ2

2L(τ)
=

λ2

2 sup
τ→+∞

L(τ)
,

which together with Proposition 1 implies that for any
t > Tλ

M(t)(
2(y(t)− x̂1(t))2

r2a(t)
− λ2

2r(t)
+

2
n∑

i=1

x̂2
i (t)

r2i−2+2a(t)
) 6 λ2

2L(t)
,

†Barbălat’s Lemma Suppose that χ : [0, +∞) → R is a continuously differentiable function, and lim
t→+∞

χ(t) exists and is finite.

If χ̇(t), t ∈ [0, +∞) is uniformly continuous, then lim
t→+∞

χ̇(t) = 0. For more details on the lemma, refer the readers to [26].
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and therefore, for any t > Tλ,

M(t)(
2(y(t)− x̂1(t))2

r2a(t)
+

2
n∑

i=1

x̂2
i (t)

r2i−2+2a(t)
) 6 λ2

L(t)
.

Thus, by 2a < 1, Proposition 1 and

y2 6 2(y − x̂1)2 + 2x̂2
1,

we have that for any t > Tλ,

λ2

L(t)
>

M(t)(
2(y(t)− x̂1(t))2

r2a(t)
+

2x̂2
1(t)

r2a(t)
) >

M(t)
y2(t)
r2a(t)

> y2(t)
L2a(t)

> y2(t)
L(t)

,

which directly concludes that

|y(t)| 6 λ, t > Tλ.

The proof for the last claim is complete, and hence so is
that of the theorem.

Remark 1 Theorem 1 shows that the desired con-
troller is based on the suitably chosen design parameters.
Also, from the detailed proof of the theorem, we know that
the design parameters should be chosen such that

i) A and B (or li’s and ki’s) satisfy

ATP +PA6−I, h1I 6 DaP + PDa 6 h2I,

BTQ + QB 6 −2I, h3I 6 DaQ + QDa 6 h4I,

where P and Q are symmetric and positive definite, and
hi’s are positive constants;

ii) 0 < a <
1

10p
,

0 < β1 6 1
max{4h2(1 + ‖Ql‖2), 2h4} ,

β2 > max{β1,
3(1 + ‖Ql‖2)

min{h3, h1(1 + ‖Ql‖2)}}.

This is the complete conditions on the design parameters
for an appropriate output feedback practical tracking con-
troller.

4 A simulation example
Consider the following second-order uncertain nonlin-

ear system:




ζ̇1 = ζ2,

ζ̇2 = u + θ′ζ2
1 sin ζ2|ζ2|+ θ′,

y = ζ1 − yr,

(11)

where unknown θ′ and yr are assumed to be 2 and sin(40t)
on [0, ∞), respectively. It can be verified that this system
satisfies the assumptions A1) and A2) with θ = 2, p = 2
and ϑ = 40.

As shown in Subsection 2.1, x̂1 and x̂2 are the estima-
tions of ζ1 − yr and ζ2, respectively, and their dynamics

satisfy (6) with n = 2. Then, according to (7) and (8), the
output-feedback tracking controller of system (11) can be
easily designed in the form (8), and furthermore, in virtue
of Theorem 1 above, choose the appropriate design param-
eters as

[l1 l2]T = [1 10]T, [k1 k2]T = [12 1]T,

a =
1
21

, β1 = 0.1 and β2 = 10.

Setting the initial conditions of the closed-loop system
by ζ0 = ζ(0)=[0 1]T, x̂(0)=[0 0]T, L(0) = 1 and M(0)
= 1, the simulation results are shown in Fig.1−Fig.4.
These figures show that all the closed-loop system states,
i.e., ζ, x̂,M and L, are all bounded, and furthermore,
demonstrate the effectiveness of the tracking controller de-
signed above, namely, tracking error |ζ1−sin(40t)| 6 0.02
when t > 0.15 s.

Fig. 1 The trajectory of the tracking error y

Fig. 2 The trajectories of η1 and η2
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Fig. 3 The trajectories of x̂1 and x̂2

Fig. 4 The trajectories of M and L

5 Concluding remarks
In this paper, the global practical tracking (or λ-

tracking) problem has been successfully solved by output-
feedback for uncertain nonlinear system (1). Mainly due to
the presence of the unmeasurable states dependent growth
with the rate of polynomial-of-output of unknown coeffi-
cients, the tracking problem of system (1) is rather difficult,
and its explicit solution, as the main novelty of the paper, is
established by introducing the new dynamic high-gain ob-
server and flexibly combining the ideas and methodologies
of universal control and dead zone. It is necessary to point
out that the design parameters in the designed controller
is undetermined, and their appropriate choice always ex-
its and should be taken within ranges (rather than a set of
constants) which would provide control designers with a
freedom in choosing the tracking controller. As one can
see, the adaptive controller designed is essentially based
on the precise knowledge of the upper bound on the high-
est power of the polynomial-of-output in the growth rate
of system (1), and apparently, the current methods are un-
available to the case without such knowledge, for which
any tempt deserves special consideration.
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Appendix

The appendix provides the rigorous proofs of fundamental
Propositions 2 and 3 and crucial Lemma 1, which is absolutely
necessary for the paper.

A1 The detailed proof of Proposition 2
First, the design parameters li, i = 1, · · · , n and ki, i =

1, · · · , n are chosen to meet Hurwitz condition‡ and such that

there exist constants hi > 0, i = 1, · · · , 4 and symmetric posi-
tive definite matrices P, Q satisfying
(

ATP + PA 6 −I, h1I 6 DaP + PDa 6 h2I,

BTQ + QB 6 −2I, h3I 6 DaQ + QDa 6 h4I.

(A.1)

It is necessary to point out that the above choice for li’s and
ki’s is always possible according to Lemma 1 of [20].

Let γ = 1+ ‖Ql‖2. Then, for V (ε, η) = γεTPε+ ηTQη,
along the trajectories of (10) on [0, Tf), we have

V̇ 6

−γr‖ε‖2 + 2γεTPf − γṙ

r
εT(DaP + PDa)ε−

2r‖η‖2+2rηTQlε1− ṙ

r
ηT(DaQ+QDa)η. (A.2)

We next deal with the destabilized terms on the right-hand
side of the above inequality. From (7) and Proposition 1, we

know
ṙ

r
=

Ṁ

M
+

L̇

L
> Ṁ

M
= −β1M + β2(1 + |y|p)2 on

[0, Tf). Then, from (A.1) and Proposition 1, we have
8
>>>>>>>>>>>>><
>>>>>>>>>>>>>:

− γṙ

r
εT(DaP + PDa)ε 6

γ(β1M − β2(1 + |y|p)2
´
εT(DaP + PDa)ε 6

h2γβ1M‖ε‖2 − h1γβ2(1 + |y|p)2‖ε‖2,

− ṙ

r
ηT(DaQ + QDa)η 6

(β1M − β2(1 + |y|p)2)ηT(DaQ + QDa)η 6
h4β1M‖η‖2 − h3β2(1 + |y|p)2‖η‖2.

(A.3)

We then handle the second and the fifth terms on the right-
hand side of (A.2). By (4) and (9), Proposition 1, we know
that

|y| 6 |x̃1|+ |x̂1| 6 ra|ε1|+ ra|η1| 6 ra(‖ε‖+ ‖η‖).

Thus, by (3) and the inequalities that |y|p 6
p

p + 1
|y|p+1+

1

p + 1
and |y|p+1 6 (1+|y|p)|y| for any y ∈ R,

we have

|f1| = |φ1 − ẏr

ra
| 6 |φ1|+ |ẏr|

ra
6

θ̄(1 + |y|p)|ζ1|
ra

+
θ + ϑ

ra
6

θ̄(1 + |y|p)(|y|+ ϑ)

ra
+

θ + ϑ

ra
6

θ̄

ra
((1 + ϑ)(1 + |y|p)|y|+ ϑ(p + 2)

p + 1
) +

θ + ϑ

ra
6

(1 + ϑ)θ̄(1 + |y|p)(‖ε‖+ ‖η‖) +

θ̄ϑ(1 + 1
p+1 )

ra
+

θ + ϑ

ra
,

where
θ̄ = θ max{(1 + 2p−1ϑp), 2p−1},

and for i = 2, · · · , n,

|fi| = | φi

ra+i−1

˛̨
˛ 6

θ̄(1 + |y|p)(ϑ +
iP

j=1
(|x̃j |+ |x̂j |)) + θ

ra+i−1
6

‡That is, polynomials sn + l1s
n−1 + · · ·+ ln−1s + ln and sn + k1s

n−1 + · · ·+ kn−1s + kn are Hurwitz.
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θ̄(1 + |y|p)(ϑ +
iP

j=1
ra+j−1(|εj |+ |ηj |)) + θ

ra+i−1
6

θ̄((1 + |y|p)
iP

j=1
(|εj |+ |ηj |) +

ϑ(1+|y|p)
r ) + θ

ra 6

θ̄(
√

i(1 + |y|p)(‖ε‖+ ‖η‖) +
ϑ(1 + |y|p)

r
) +

θ

ra
.

Combing the above estimations results in

‖f‖∞ = max
i=1,··· ,n

|fi| 6

Θ̄(1 + |y|p)(‖ε‖+ ‖η‖) +
Θ̄(1 + |y|p)

r
+

Θ̄

ra
,

where Θ̄ = θ + ϑ +
√

n(1 + 2ϑ)θ̄ is obviously an unknown
positive constant.

Therefore, by the method of completing square, the sec-
ond term on the right-hand side of (A.2) satisfies (noting that
1− 2a > 0 and r(t) > 1, ∀t ∈ R+)

2γεTPf 6 2γ‖P‖ · ‖ε‖ · ‖f‖∞ 6
2γ‖P‖ · ‖ε‖(Θ̄(1 + |y|p)(‖ε‖+ ‖η‖) +

Θ̄(1 + |y|p)

r
+

Θ̄

ra
) 6

γΘ̄2‖P‖2‖ε‖2 + 2γ(1 + |y|p)2
`‖ε‖2 + ‖η‖2´+

γ(1 + |y|p)2‖ε‖2 +
γΘ̄2‖P‖2

r2
+

r1−2a‖ε‖2
4

+

4γ2Θ̄2‖P‖2
r

6

(
r1−2a

4
+ γΘ̄2‖P‖2)‖ε‖2 +

3γ(1 + |y|p)2(‖ε‖2 + ‖η‖2) +
D1(Θ̄)

r
, (A.4)

where D1 = 5γ2Θ̄2‖P‖2 is an unknown positive constant.
In addition, the fifth term on the right-hand side of (A.2)

satisfies

2rηTQlε1 6
2r‖Ql‖ · ‖η‖ · |ε1| 6 r‖Ql‖2‖ε‖2 + r‖η‖2.

Substituting this, (A.3) and (A.4) into (A.2), we obtain

V̇ 6 −(γr − r‖Ql‖2 − r1−2a

4
−

h2γβ1M−γΘ̄2‖P‖2)‖ε‖2−(L−h4β1)M‖η‖2−
(h3β2 − 3γ)(1 + |y|p)2‖η‖2 −

(h1γβ2 − 3γ)(1 + |y|p)2‖ε‖2 +
D1(Θ̄)

r
, (A.5)

where the design parameters a, β1 and β2 are chosen as fol-
lows:

8
>>>>>><
>>>>>>:

0 < a <
1

10p
,

0 < β1 6 1

max{4γh2, 2h4} ,

β2 > max{β1,
3γ

min{h3, h1γ}}.

(A.6)

It is clear that inequalities of (A.6) have absorbed the preced-
ing constraints on a, β1 and β2 given in subsection 2.2, i.e.,

0 < a <
1

10p
and 0 < β1 6 β2. Moreover, according to

(A.1), one can see that hi’s depend on a, so do β1 and β2, and

hence the choice described by (A.6) should be implemented in
the order of first a, then β1, and finally β2.

From (A.6) and the facts p > 1, r = LM, L(t)> 1, M(t)
> 1, ∀t ∈ [0, +∞), it clearly follows that

8
>>>>>>>><
>>>>>>>>:

0 < 1− 2a < 1,

r1−2a

4
+ h2γβ1M 6 0.5r,

(L− h4β1)M > 0.5r,

h3β2 − 3γ > 0,

h1γβ2 − 3γ > 0,

and therefore from (A.5) and noting γ = 1 + ‖Ql‖2 > 1, we
have

V̇ 6−`0.5r −Θ)(‖ε‖2 + ‖η‖2) +
Θ

r
, (A.7)

where Θ = max{γΘ̄2‖P‖2, D1(Θ̄)}. This completes the
proof of Proposition 2.

A2 The detailed proof of Proposition 3
By the preceding definitions of ε, η and r, it is easy to

know that the boundedness of x and x̂ can be implied by that
of η, ε, M and L. Therefore, to complete the proof, it suffices
to prove the boundedness of η, ε and M , based on that of L on
[0, Tf).

Let’s first show that η is bounded on [0, Tf). Consider

the function Vη(η) = ηTQη for (10). Then, by (A.1),
ṙ

r
=

Ṁ

M
+

L̇

L
> Ṁ

M
and the foregoing updating law of M , we have

V̇η =

−2r‖η‖2 + 2rηTQlε1 − ṙ

r
ηT(DaQ + QDa)η 6

−2r‖η‖2 + 2rηTQlε1 − Ṁ

M
ηT(DaQ + QDa)η 6

−2r‖η‖2 + 2rηTQlε1 + h4β1M‖η‖2 −
h3β2(1 + |y|p)2‖η‖2. (A.8)

Noticing

2rηTQlε1 6 1

2
r‖η‖2 + 2r‖Ql‖2ε2

1,

the facts h4β1 6 1

2
, h3β2 > 0 (ensured by (A.6)), the sup-

posed boundedness of L on [0, +∞), and using (7) and (A.8),
we have

V̇η 6
−r‖η‖2 + 2r‖Ql‖2ε2

1 − h3β2(1 + |y|p)2‖η‖2 6

−r‖η‖2 + ‖Ql‖2LM(2ε2
1 + 2‖η‖2 − λ2

2r
) +

λ2‖Ql‖2
2

6 −c1rVη + ‖Ql‖2L(Tf)L̇ +
λ2‖Ql‖2

2
,

where c1 =
1

λmax(Q)
> 0, and L(Tf) denotes the maximum

of L on [0, Tf). From this, it is easy to see that on [0, Tf)
(keeping in mind the fact r > 1),

d
dt

(Vη(η(t))ec1t) 6 ‖Ql‖2L(Tf)L̇(t)ec1t +
λ2‖Ql‖2ec1t

2
.

(A.9)

Then, from 0 to any t ∈ [0, Tf), integrating both sides of (A.9)
directly yields

Vη(η(t))ec1t 6



930 Control Theory & Applications Vol. 31

Vη(η(0)) + ‖Ql‖2L(Tf)
w t

0
ec1τ dL +

λ2‖Ql‖2
2

w t

0
ec1τ dτ =

Vη(η(0)) + ‖Ql‖2L(Tf)(e
c1tL(t)− L(0)−

c1
w t

0
L(τ)ec1τ dτ) +

λ2‖Ql‖2
2c1

(ec1t − 1) 6

Vη(η(0)) + ‖Ql‖2L2(Tf)e
c1t +

λ2‖Ql‖2
2c1

ec1t,

which shows that for ∀t ∈ [0, Tf),

Vη(η(t)) 6 Vη(η(0))e−c1t + ‖Ql‖2L2(Tf) +
λ2‖Ql‖2

2c1
,

and hence η is bounded on [0, Tf).
We next show that x̃ is bounded on [0, Tf) as well. For

this purpose, we introduce the following scaling transformation
(similar to that in [21]):

ξi =
x̃i

(L∗M)a+i−1
, i = 1, · · · , n,

where L∗ > L(Tf) is a positive constant to be chosen large
enough. Then, in terms of the foregoing dynamics of x̃ and M ,
we have
8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ξ̇i = L∗Mξi+1 − L∗Mliξ1 + L∗Mliξ1−

LM(
L

L∗
)i−1liξ1 +

ϕi(·)
(L∗M)i+a−1

−

Ṁ

M
(i + a− 1)ξi, i = 1, · · · , n− 1,

ξ̇n = −L∗Mlnξ1 + L∗Mlnξ1 − LM(
L

L∗
)n−1lnξ1+

ϕn(·)
(L∗M)n+a−1

− Ṁ

M
(n + a− 1)ξn,

which can be compactly rewritten in the following form:

ξ̇ = L∗MAξ + L∗Mlξ1 − LMΓlξ1 +

f∗(t, x, u)− Ṁ

M
Daξ, (A.10)

where

ξ = [ξ1 · · · ξn]T,

Γ = diag{1,
L

L∗
, · · · , (

L

L∗
)n−1},

A, l and Da are the same as before, and

f∗ = [f∗1 · · · f∗n]T =

[
ϕ1(·)

(L∗M)a
ϕ2(·)

(L∗M)a+1
· · · ϕn(·)

(L∗M)a+n−1
]T. (A.11)

Then, along the solutions of (A.10), the Lyapunov candidate
function Vξ(ξ) = ξTPξ satisfies

V̇ξ 6 −L∗M‖ξ‖2 + 2L∗MξTPlξ1 − 2LMξTPΓ lξ1 +

2ξTPf∗ − Ṁ

M
ξT(DaP + PDa)ξ. (A.12)

Let’s handle the destabilized terms on the right-hand side of
the above inequality. By the method of completing square, we
obtain

8
>><
>>:

2L∗MξTPlξ1 64L∗M‖Pl‖2ξ2
1+

L∗M‖ξ‖2
4

,

2LMξTPΓ lξ1 64LM‖PΓ l‖2ξ2
1+

LM‖ξ‖2
4

.

(A.13)

Moreover, by (3)−(4)(A.11) and the fact L∗M > 1 on
[0, Tf), we have

|f∗1 | = | φ1 − ẏr

(L∗M)a
| 6 |φ1|+ |ẏr|

(L∗M)a
6

θ̄(1 + |y|p)|x1|
(L∗M)a

+
ϑ

(L∗M)a
6

θ̄(1 + |y|p)(|x̃1|+ |x̂1|)
(L∗M)a

+
θ + ϑ

(L∗M)a
6

θ̄(1 + |y|p)(|ξ1|+ |η1|) +
θ + ϑ

(L∗M)a
6

θ̄(1 + |y|p)(‖ε‖+ ‖η‖) +
θ + ϑ

(L∗M)a
,

and similarly for i = 2, · · · , n,

|f∗i | = | φi

(L∗M)a+i−1
| 6

θ̄(1 + |y|p)(ϑ +
iP

j=1
(|x̃j |+ |x̂j |)) + θ

(L∗M)a+i−1
6

θ̄(1 + |y|p)(
iP

j=1
(|ξj |+ |ηj |) +

ϑ

L∗M
) +

θ

(L∗M)a
6

θ̄(1 + |y|p)(
√

i(‖ξ‖+ ‖η‖) +
ϑ

L∗M
) +

θ

(L∗M)a
,

which together with the preceding definition of unknown con-
stant Θ̄ result in

‖f∗‖∞ = max
i=1,··· ,n

|f∗i | 6

Θ̄(1 + |y|p)(‖ξ‖+ ‖η‖) +
Θ̄(1 + |y|p)

L∗M
+

Θ̄

(L∗M)a
.

Based on above estimation and by the method of completing
square, we have

2ξTPf∗ 6
2‖P‖ · ‖ξ‖(Θ̄(1 + |y|p)(‖ξ‖+ ‖η‖) +

Θ̄(1 + |y|p)

L∗M
+

Θ̄

(L∗M)a
) 6

h1β2

2M
(1 + |y|p)2‖ξ‖2 +

4

h1β2
Θ̄2‖P‖2M ·

(‖ξ‖2 + ‖η‖2) +
h1β2

2L∗M
(1 + |y|p)2‖ξ‖2 +

2Θ̄2‖P‖2
L∗Mh1β2

+
Θ̄‖P‖

(L∗M)a
(1 + ‖ξ‖2) 6

MD2(Θ̄)(‖ξ‖2 + ‖η‖2) +

h1β2

M
(1 + |y|p)2‖ξ‖2 + D2(Θ̄),

where D2 =
4

h1β2
Θ̄2‖P‖2 + Θ̄‖P‖ is an unknown positive

constant. From this together with (A.12)−(A.13) and the up-
dating law of M , it follows that

V̇ξ 6

−L∗M‖ξ‖2 + 4L∗M‖Pl‖2ξ2
1 +

L∗M‖ξ‖2
4

+

4LM‖PΓ l‖2ξ2
1 +

LM‖ξ‖2
4

+

MD2(Θ̄)(‖ξ‖2 + ‖η‖2) +
h1β2

M
(1 + |y|p)2‖ξ‖2 +

D2(Θ̄)− `− β1M + β2(1 + |y|2)2´ξT`DaP + PDa
´
ξ 6

−(0.5L∗ −D2(Θ̄)− h2β1)M‖ξ‖2 + MD2(Θ̄)‖η‖2 +
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4M(L∗‖Pl‖2 + L‖PΓ l‖2)ξ2
1 − h1β2(1−M−1)(1 +

|y|p)2‖ξ‖2 + D2(Θ̄).

If L∗ is chosen large enough such that

L∗ > max{L(Tf), 4D2(Θ̄) + 4h2β1},
and noting the foregoing updating law of L and M(t) > 1, t ∈
R+, we have

V̇ξ 6 −0.25L∗M‖ξ‖2 + MD2(Θ̄)‖η‖2 +

4M(L∗‖Pl‖2 + L‖PΓ l‖2)ξ2
1 + D2(Θ̄) 6

−0.25L∗M‖ξ‖2 + (0.5D2(Θ̄) +

2(L∗‖Pl‖2 + L(Tf)‖PΓ l‖2))L̇ +

λ2
“
0.5D2(Θ) + 2(L∗‖Pl‖2 + L(Tf)‖PΓ l‖2)

”

2
+

D2(Θ̄),

from which, noting the boundedness of ‖PΓ l‖ by the foregoing
definition of Γ and applying the same reasoning as the above
proof of the boundedness of η, we can easily show that ξ is
bounded on [0, Tf), as well as ε.

It remains only to prove the boundedness of M on [0, Tf).
In fact, from the boundedness of L, η and ε on [0, Tf), we eas-
ily know that

|y(t)| 6 DMa(t), ∀t ∈ [0, Tf),

where positive constant D = L(tf) sup
t∈[0,tf )

`|ε1(t)|+ |η1(t)|
´
.

Then, from the updating law of M , it follows that on [0, Tf)

Ṁ = −β1M2 + β2(1 + |y|p)2M 6
−β1M2 + 2D2apM1+2ap + 2β2M,

which together with the fact 1+2ap < 2 directly concludes the
boundedness of M on [0, Tf).

So far, the proof of Proposition 3 is complete.

A3 The detailed proof of Lemma 1
To begin with, let’s prove Tf = +∞ by a contradiction ar-

gument. Suppose that Tf is finite. Then, to seek contradictions,
consider the following two mutually exclusive cases:

Case 1 L is bounded on [0, Tf).
Case 2 L is unbounded on [0, Tf) i.e., L escapes at Tf .
First for Case 1, because Tf is finite and as pointed out be-

fore, [0, Tf) is the maximal interval of existence of the solution
of the closed-loop system, we know there must exist at least one
other closed-loop system state which escapes at Tf . However,
by Proposition 3, the boundedness of L on [0, Tf) implies that
ε, η and M are bounded on [0, tf), and so are all the closed-
loop system states. This obviously results in a contradiction
and consequently shows Case 1 does not occur.

Second for Case 2, since the solution of the closed-loop
system is well defined and L is monotone nondecreasing, both
on [0, Tf), there must exist a finite time t∗ ∈ (0, Tf), such that

L(t) > 2 + 2Θ, ∀t ∈ [t∗, Tf),

which and (A.7) result in

V̇ 6 −M(‖ε‖2 + ‖η‖2) + Θ 6
−c2MV + Θ, ∀t ∈ [t∗, Tf), (A.14)

where c2 =
1

max{γλmax(P ), λmax(Q)} . From this, it is easy

to show that ε and η are bounded on [0, Tf), and furthermore,
by the finiteness of Tf ,

w Tf

t∗
M(t)V (t)dt +

w t∗

0
M(t)V (t)dt 6

1

c2
(V (t∗) + ΘTf) +

w t∗

0
M(t)V (t)dt < +∞.

Then, after integrating L̇ = M max{2ε2
1 +2‖η‖2− (2r)−1λ2,

0} from 0 to Tf , we have

+∞ = L(Tf)− L(0) =
w Tf

0
M(t)max{2ε2

1(t) + 2‖η(t)‖2 − λ2

2r(t)
, 0}dt 6

w Tf

0
M(t)(2ε2

1(t) + 2‖η(t)‖2)dt 6
w Tf

0
c3M(t)V (t)dt < +∞,

where c3 =
2

min{γλmin(P ), λmin(Q)} , which is a contradic-

tion and hence shows that Case 2 is impossible to occur.
So far, the infiniteness of Tf is concluded from the above

two contradictions brought out in Cases 1 and 2.
We next turn to proving the boundedness of x, x̂, L and

M on [0, Tf) = [0, +∞). As discussed before, it suffices to
prove the boundedness of ε, η L and M on [0, +∞). Further-
more, by Proposition 3, we only need to show the bounded-
ness of L on [0, +∞). This will be proceeded by a contra-
diction argument. Suppose that L is unbounded on [0, +∞).
Then, by the monotone nondecreasing property of L, we know
that lim

t→+∞L(t) = +∞. Thus, due to the continuity of L on

[0, +∞), for any small constant σ ∈ (0, 1), there exists a finite
time Tσ ∈ (0, +∞), at which

L(Tσ) = 1 + 2Θ +
2

σc2
, (A.15)

where c2 is the same constant as defined in (A.14). By this,
(A.7) and the fact L(t) > L(Tσ), ∀ t ∈ [Tσ, +∞), we know
that on [Tσ, +∞),

V̇ 6 − 1

σc2
(‖ε‖2 + ‖z‖2) +

Θ

r(Tσ)
6

− 1

σ
V +

Θ

L(Tσ)
. (A.16)

Multiplying e
1
σ t on both sides of (A.16), it is easy to see

d
dt

(e
1
σ tV (t)) 6 Θ

L(Tσ)
e

1
σ t, ∀t ∈ [Tσ, +∞),

where and in what follows, V (t) denotes V (ε(t), η(t)) if no
confusion occurs. After integrating both sides of the above in-
equality from Tσ to t, we yield

V (t) 6 σΘ

L(Tσ)
+ e

1
σ (Tσ−t)V (Tσ), (A.17)

for ∀ t ∈ [Tσ, +∞).
It is noticed that (A.15) means that Tσ is monotone in-

creasing to infinity as σ goes to zero. Thus, there holds that
Tσ > T1 since σ 6 1, where T1 = Tσ|σ=1. This and (A.17)
imply that

V (Tσ) 6 σΘ

L(T1)
+ e

1
σ (T1−Tσ)V (T1) 6

Θ + V (T1),

from which and (A.17), if follows that V (t) 6 2Θ + V (T1),
∀ t ∈ [Tσ, +∞), and consequently,

V (t) 6 max{2Θ + V (T1), sup
06τ6T1

V (τ)} =: V̄ ,

∀ t ∈ [0, +∞). (A.18)
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By (A.18) and the preceding definitions of V and c3, we
easily have |y| 6 ra(c3V̄ )

1
2 on [0, +∞). Then from Propo-

sition 1 and the foregoing updating law of M , it follows that

Ṁ = −β1M2 + β2(1 + |y|p)2M 6

−β1M2 + 2β2

“
1 + r2apcp

3V̄ p
”

M 6

−β1M2 + 2β2(1 + L2apcp
3V̄ p)M1+2ap.

This together with M(0) = 1 and 0 < β1 6 β2 concludes that

M(t) 6 (
2β2

β1
(1 + cp

3V̄ p( max
06τ6t

L(τ))2ap))
1

1−2ap ,

for ∀t ∈ [0, +∞), which and the monotone nondecreasing
property of L on [0, +∞) imply that

M(t) 6 (2β−1
1 β2(1 + L2ap(t)cp

3V̄ p))
1

1−2ap , (A.19)

for ∀ t ∈ [0, +∞). This reveals a quite essential relationship
between M and L to be used in the subsequent proof. Also,

noting that a is chosen such that 0 < a 6 1

10p
and hence

0 <
2ap

1− 2ap
6 1

4
, we see from (A.15) and (A.19) that

M(Tσ) 6 c4σ−
2ap

1−2ap 6 c4σ−
1
4 , ∀σ ∈ (0, 1), (A.20)

where

c4 = (2β−1
1 β2(1 + (1 + 2Θ + 2/c2)

2apcp
3V̄ p))

1
1−2ap .

Moreover, by (7)(A.18) and the above definitions of c3 and
V̄ , one has on [0, +∞)

L̇ = M max{2ε2
1 + 2‖η‖2 − (2r)−1λ2, 0} 6

2M(ε2
1 + ‖η‖2) 6 c3MV̄ . (A.21)

Also, from (A.19), the facts of L > 1 on [0, +∞) and
2ap

1− 2ap
6 1

4
, it is not hard to obtain for positive constant

c5 = (2β−1
1 β2(1 + cp

3V̄ p))
1

1−2ap ,

M(t) 6 c5
4
p

L(t), ∀t ∈ [0, +∞), (A.22)

which together with (A.21) straightforwardly leads to

L̇(t) 6 c6
4
p

L(t), ∀t ∈ [0, +∞),

for positive constant c6 = c3c5V̄ , and in turn

L(t) 6 (
5c6
4

(t− Tσ) + L
5
4 (Tσ))

4
5 , (A.23)

for ∀t ∈ [Tσ, +∞).
By obvious observation, we know that if time t is large

enough, then the last second term on the right-hand side of
(A.17) will become arbitrarily small. Thus, in order to pro-
ceed further, we need to find a sufficiently large time t (> Tσ),
such that the following inequality of t holds

e
1
σ (Tσ−t)V̄ 6 λ2

8c3r(t)
.

This can be implied by (since (A.22) and (A.23))

e
1
σ (Tσ−t)V̄ 6 λ2

8c3c5(
5c6
4 (t− Tσ) + L

5
4 (Tσ))

,

or equivalently

8c3c5V̄ e
1
σ (Tσ−t)(

5c6
4

(t− Tσ) + L
5
4 (Tσ)) 6 λ2,

which is further implied by (since eTau > τ, ∀τ ∈ R+)

8c3c5V̄ e
1
σ (Tσ−t)(

5σc6
4

e
1
σ (t−Tσ) + L

5
4 (Tσ)) 6 λ2.

Therefore, if σ ∈ (0, 1) is chosen sufficiently small such that

10σc3c5c6V̄ < λ2 6 8c3c5V̄ L
5
4 (Tσ) + 10σc3c5c6V̄ ,

(A.24)

for any prescribed λ, then by solving the above inequality of t,
we obtain

t > bTσ =: Tσ + σln
8c3c5V̄ L

5
4 (Tσ)

λ2 − 10σc3c5c6V̄
, (A.25)

which evidently ensures that T̂σ > Tσ and

e
1
σ (Tσ−t)V̄ 6 λ2

8c3r(t)
, ∀ t > bTσ.

Moreover, by (A.23)

L(bTσ) 6

(
5c6
4

σln
8c3c5V̄ L

5
4 (Tσ)

λ2−10σc3c5c6V̄
+L

5
4 (Tσ))

4
5 6

(
5c6
4

σln
8c3c5V̄ L

5
4 (Tσ)

λ2 − 10σc3c5c6V̄
)

4
5 + L(Tσ). (A.26)

Noting that (A.15), we have lim
σ→0+

5c6
4

σln
8c3c5V̄ L

5
4 (Tσ)

λ2 − 10σc3c5c6V̄
=

0. Then by L(bTσ) > L(Tσ) > 1 and (A.26), we know that
when σ sufficiently small (see Remark A.1 below), there holds

L(Tσ) 6 L(bTσ) 6 (
4

3
)

4
5 L(Tσ), (A.27)

and in this situation,

e
1
σ (Tσ−t)V̄ 6 λ2

8c3c5L
5
4 (Tσ)

6 λ2

6c3c5L
5
4 (bTσ)

, ∀ t > bTσ.

For the first term on the right-hand side of (A.17), by
(A.20) and (A.27), when σ ∈ (0, 1) small enough, we know

σ
1
4 L

1
4 (bTσ) 6 (

4

3
)

1
5 σ

1
4 L

1
4 (Tσ) 6 (

4

3
)

1
5 (1+2Θ+2/c2)

1
4 , and

therefore,

σΘ

L(Tσ)
6 (

4

3
)

4
5

σ
3
4 Θ(σ

1
4 L

1
4 (bTσ))

L
5
4 (bTσ)

6

σ
3
4

L
5
4 (bTσ)

· 4(1 + 2Θ + 2/c2)
1
4 Θ

3
6

λ2

6c3c5L
5
4 (bTσ)

. (A.28)

In virtue of above estimations, for any prescribed tracking
level λ > 0, one can always choose sufficient small σ > 0,
such that for any t > bTσ ,

8
>>><
>>>:

σΘ

L(Tσ)
6 λ2

6c3c5L
5
4 (bTσ)

,

e
1
σ (Tσ−t)V̄ 6 λ2

6c3c5L
5
4 (bTσ)

,

from which together with (A.22) and the definitions of V and
c3, it is concluded that for ∀t > bTσ ,

2ε2
1(t) + 2‖η(t)‖2 6 c3V (t) 6

λ2

3c5L
5
4 (bTσ)

<
λ2

2c5L
5
4 (bTσ)

6 λ2

2r(bTσ)
. (A.29)
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This is the extremely important inequality in the entire proof,
based on which we can establish a contradiction to the forego-
ing supposed L(+∞) = +∞ and finally prove the bounded-
ness of L, as will be proceeded in the later.

Due to the continuity of the closed-loop solution on
[0, +∞) (already discussed) and L(+∞) = +∞ (supposed
above), there always exists a finite time T ′ > bTσ , such that
L(T ′) > L(bTσ). Then by (A.29) and the updating law of L,
there must exist times on (bTσ, T ′), at which 2ε2

12ε2
1 +2‖η‖2−

λ2

2c5L
5
4

= 0. In these times, we use T ′′ denote the first time (or

the minimal time), at and before which, there hold respectively8
>>><
>>>:

2ε2
1(T

′′) + 2‖η(T ′′)‖2 =
λ2

2c5L
5
4 (T ′′)

,

2ε2
1(t) + 2‖η(t)‖2 <

λ2

2c5L
5
4 (t)

, ∀t ∈ [ bTσ, T ′′).

(A.30)
The first relationship concludes L(T ′′) > L(bTσ). Since oth-
erwise, we know L(T ′′) = L(bTσ) and in turn 2ε2

1(T
′′) +

2‖η(T ′′)‖2 <
λ2

2c5L
5
4 (bTσ)

=
λ2

2c5L
5
4 (T ′′)

by (A.29), which

contradicts the first inequality of (A.30). On the other hand,
from (A.22) and the second inequality of (A.30), we have for
∀ t ∈ [ bTσ, T ′′),

2ε2
1(t) + 2‖η(t)‖2 <

λ2

2c5L
5
4 (t)

=

λ2

2L(t)c5L
1
4 (t)

6 λ2

2r(t)
,

which together with the updating law of L leads to L̇(t) = 0,

∀t ∈ [ bTσ, T ′′), and then by the continuity of the closed-loop
system, we have L(T ′′) = L(bTσ). This contradicts the just
deduced L(T ′′) > L(bTσ) from the first inequality and finally
shows that L(t) is bounded on [0, +∞).

The boundedness of ε, η and M can be immediately estab-
lished by that of L and Proposition 3. From this and the defined
transformation (9), we can obtain that x and x̂ are bounded on
[0, +∞), so is u by its expression (i.e., (8)). The proof of the
lemma is complete.

Remark A.1 In above proof, constant σ > 0 is required
to be sufficiently small several times to satisfy different condi-
tions. Collecting all situations (see (A.24)−(A.26), (A.28)), we
have
8
>>>><
>>>>:

10σc3c5c6V̄ < λ2 6 8c3c5V̄ L
5
4 (Tσ) + 10σc3c5c6V̄ ,

(
4

3
)

4
5 − 1 > (

5c6
4

σln
8c3c5V̄ L

5
4 (Tσ)

λ2 − 10σc3c5c6V̄
)

4
5 ,

λ2 > 8c3c5(1 + 2Θ + 1/c2)
1
4 Θσ

3
4 .

Noting L(Tσ) = 1 + 2Θ +
2

σc2
, it is obvious that there always

exists solution in (0, 1) for the always exists solution in (0, 1)
for the above inequalities of σ.
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