首页 | 官方网站   微博 | 高级检索  
     


Human-in-the-Loop Consensus Control for Nonlinear Multi-Agent Systems With Actuator Faults
Authors:Guohuai Lin  Hongyi Li  Hui Ma  Deyin Yao  Renquan Lu
Abstract:This paper considers the human-in-the-loop leader-following consensus control problem of multi-agent systems (MASs) with unknown matched nonlinear functions and actuator faults. It is assumed that a human operator controls the MASs via sending the command signal to a non-autonomous leader which generates the desired trajectory. Moreover, the leader’s input is nonzero and not available to all followers. By using neural networks and fault estimators to approximate unknown nonlinear dynamics and identify the actuator faults, respectively, the neighborhood observer-based neural fault-tolerant controller with dynamic coupling gains is designed. It is proved that the state of each follower can synchronize with the leader’s state under a directed graph and all signals in the closed-loop system are guaranteed to be cooperatively uniformly ultimately bounded. Finally, simulation results are presented for verifying the effectiveness of the proposed control method. 
Keywords:Actuator faults  distributed control  human-in-the-loop  neighborhood observer  nonlinear multi-agent systems (MASs)
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号