首页 | 官方网站   微博 | 高级检索  
     

基于改进DRLSE水平集模型的图像分割
作者姓名:魏晨晨  羿旭明
作者单位:武汉大学数学与统计学院,湖北武汉,430072;武汉大学数学与统计学院,湖北武汉,430072
基金项目:国家自然科学基金面上项目(11671307)
摘    要:针对 DRLSE 水平集模型对噪声敏感、依赖初始轮廓位置以及演化速度缓慢等不 足,利用小波变换和小波阈值去噪的方法,构造对噪声不敏感的边缘信息刻画矩阵,定义基于 图像信息的边缘停止函数和自适应权重系数,获得了改进的 DRLSE 水平集图像分割模型。利 用有限差分法对模型求解,并采用 Jaccard 相似度作为评价模型的定量分析方法,数值结果显示 改进的模型及算法对图像分割的有效性,克服了 DRLSE 水平集模型分割含噪图像以及定义初 始轮廓位置的局限性,提高了 DRLSE 水平集模型的计算效率和图像分割精度。

关 键 词:图像分割  DRLSE水平集  边缘停止函数  自适应

An Improved Method for Image Segmentation Based on DRLSE Level Set
Authors:WEI Chen-chen  YI Xu-ming
Affiliation:(School of Mathematics and Statistics, Wuhan University, Wuhan Hubei 430072, China)
Abstract:Aiming at the fact that the DRLSE level set model is inadequately sensitive to noise and dependent on the initial contour and slow evolution we used wavelet transform and wavelet threshold denoising methods. A new edge stop function and adaptive weight coefficient based on image information are defined by constructing the edge characterization matrix which is not sensitive to noise. An improved DRLSE level set image segmentation model is thus obtained. The finite difference method is employed to solve the model, and Jaccard similarity is used as the quantitative analysis method of evaluation model. The numerical results show that the improved model and algorithm are effective for image segmentation, overcoming the limitation of DRLSE level set model and dividing the noisy image and defining the initial contour position, which improve the computational efficiency and image segmentation precision of the DRLSE level set model.
Keywords:image segmentation  DRLSE level set  edge stop function  adaptive  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号