蜗杆传动装置的故障模式识别

倪乃琛 孟子厚 郑治平 朱鸣华

(上海,同济大学声学所,200092) (上海卷烟厂,200082)

针对蜗杆传动装置在进行故障诊断时其谐波特征不明显的特点,采用谱的整体特征量进行特征分析,获得了较好的效果。在此基础上将模式识别技术运用于故障诊断,设计了模式分类器,对 蜗杆传动装置的故障模式进行判别。本文讨论了具体的最佳特征选择方法及模式分类器的设计和 训练方法,对实际应用将会有所启发和帮助。

1 引言

正确地诊断并预报机器的故障是提高机 器的使用效率、防止突发性严重事故发生的 有效途径。故障诊断方法很多,对旋转机器 来说,目前使用最多的仍然是谐波分析法, 根据机器部件振动信号的特征频率及谐波成 分判断并预报机器的故障,如轴承、齿轮和 转轴组件等的故障诊断。国内几种已经商品 化了的诊断系统^[1],都是以谐波分析为基础 的。以谐波分析为手段的故障诊断方法要求: 1.机械部件的故障特征频率比较明显; 2.故 障发生或将要发生时基频和谐波之间的相对 关系有明显的变化; 3.测试信号的信噪比要 足够高。对简单机械来说,以上条件是比较 容易满足的,但对复杂机械或特殊机械并且 测试环境比较恶劣的条件下,上面的要求就 难以满足了。本文所讨论的蜗杆蜗轮传动装 置就是一种比较特殊的机械部件, 它的传动 原理不同于齿轮等常见传动机械,其特征频 率不是十分明显,所以只作谐波分析难以十 分准确地判断故障的发生和故障的类型。本 文针对蜗杆传动装置的特殊性,在对频谱的 整体特征量分析的基础上,采用模式识别技 术对某种蜗杆传动装置的常见故障模式进行 了识别,分析和讨论了具体的特征分析和模 式识别方法,以期对实际中遇到的这一类问 题能有所帮助和启发。

2 实验装置和测试设备

本文中的实验装置是卷烟机上所使用的 一套蜗杆蜗轮传动机构,整个装置由电机、 蜗杆、蜗轮、轴端轴承、蜗轮轴轴承组成, 如图1所示。试验装置的参数如下:

图1 试验装置及测量点

电机转速: 1360转/分钟(22.67转/秒) 蜗杆头数: 1 蜗轮齿数: 70 导程角: 3.4° 齿形角: 20°

选取两个振动测量点,一个在机壳侧面,垂 直于蜗轮轴方向,另一个在机壳顶部,平行 于蜗轮轴方向。此类装置的常见故障为蜗轮 磨损而造成的停机失效,本文的试验也只考

- 7 -

声学技术

虑这种故障。通过对机器运转历史和失效样 本的分析归纳,将故障样本分为以下儿种;

GOOD:正常状态

- BAD A: 轻度均匀磨损
- BAD B: 中度均匀磨损
- BAD C: 局部严重磨损(个别齿几乎磨 平, 其余齿良好)

本实验的测试设备如图 2 所示,以 B&K2515振动分析仪和B&K7616机器状态 监测管理软件为主要手段。B&K2515 的分 析频率范围为0.3Hz~20kHz,具有较好的 现场采样和实时谱处理功能。B&K7616 的 主要功能为对B&K2515进行程序控制,将 B&K2515采集的数据调入微机归档存储,并 具有简单的比较分析功能。

图2 测试设备

3 特征分析

蜗杆蜗轮传动机构的传动原理和齿轮传动原理有所不同,在整个传动过程中没有像 齿轮传动那样明显的冲击过程,蜗杆与蜗轮 的作用过程很大程度上是一种相对滑动的过 程,因此在实测的振动信号中,与蜗杆转速 相关的特征频率不是十分明显。针对这种情 况对本文的试验装置除了作经典的谐波分析 外,更着重做了谱的整体特征分析,并对两 者作了对比,从整体特征中选择出作为故障 模式分类的最佳特征量。

3.1 谐波分析

用B&K2515测得的谱在1kHz以下的谱 型呈现"梳状"成分,由蜗杆的回转频率和其 一系列谐波成分组成,当状态变化时这些谐 波成分的相互关系及性质也许会发生变化。 设S(f₁)是基带频谱, i=1,2,…,N, f₀是回 转频率,则梳状成分为

$$S(nf_0), n = 1, 2, 3, \dots, M$$

对一特定状态的谱采用如下的谐波特征量:

$$P_{1} = \frac{\sum_{n=1}^{M} S(nf_{0})}{S(f_{0})}$$
(1)

$$P_{2} = \frac{\prod_{n=1}^{M} S^{2}(nf_{0})}{S^{2}(f_{0})}$$
 (2)

$$P_{3} = \frac{\sum_{i=1}^{N} S(f_{i})}{\sum_{i=1}^{M} S(nf_{a})}$$
(3)

$$P_{4} = \frac{\sum_{i=1}^{N} S^{2}(f_{1})}{\sum_{n=1}^{M} S^{2}(nf_{0})}$$
(4)

对两类不同状态的谱的谐波系,采用以下特征量,其中 $G(nf_0)$ 是正常谱的谐 波 系, $B(nf_0)$ 是故障谱的谐波系:

$$K_{1} = \frac{\sum_{n=2}^{M} B(nf_{0})}{\sum_{n=2}^{M} G(nf_{0})}$$

$$K_{2} = \frac{\sum_{n=2}^{M} B^{2}(nf_{0})}{\sum_{n=2}^{M} G^{2}(nf_{0})}$$
(6)

$$K_{s} = \frac{1}{M-1} \sum_{n=2}^{M} \frac{B(nf_{0})}{G(nf_{0})} \quad (7)$$

$$K_{4} = \frac{1}{M-1} \sum_{n=2}^{M} \frac{B^{2}(nf_{0})}{G^{2}(nf_{0})} \quad (8)$$

表1给出了在500Hz的基带谱上三类不同状态的谐波特征值测量结果的平均值和其散

11卷4期(1992)、

表 1 谐波特征量及其散布

(side SP500)

	P1	P2	P3	P4	K1	K2	K3	K4
GOOD	4.0	1.7	3.9	1,7'	1.2	1.7	1.3	3.7
	0.4	0.2	0.3	0.2	0.2	0.5	0.3	2.1
BAD A	4.2	1.7	4,6	1.85	1.19	1.5	1.5	3.7
	0.4	0.2	0.3	0.09	0.006	0.2	0.2	2.0
В	8.0	6.7	3.5	1.35	3.2	17	4.4	43
	1.1	2.7	0.2	0.05	0.5	8	0.6	18
С	3.5	1.4	5.0	1.9	1.2	1.5	1.7	4.9
	0.5	0.1	0.4	0.3	0.2	0.5	0.2	1.5

布,其中f₀=25Hz,M=20,K₁~K₄是相 对一标准参考谱计算的。由表1看出,除了 对故障比较严重的状态外,蜗杆蜗轮传动装 置的谐波特征量随状态的变化远不如齿轮传 动装置的谐波特征量敏感^{12 J}。从P₃,P₄, K₁,K₂难以看出明显的一致性规律,其它 特征对状态的变化虽有所反映,但其散布也 较大,数据不够稳定。而这些特点正是由机 器本身传动方式的特殊性所决定的。

3.2 谱的整体特征分析

针对谐波分析中特征不太敏感的问题, 对 B&K2515测得的振动信号的频谱进行再 处理,作整体特征分析,试图选择出对蜗轮 状态变化敏感的特征量,做为模式分类器的 特征量,采用以下几种特征量:

频谱重心:
$$Y_1 = FC = \frac{\sum_{i=1}^{N} f_i S(f_i)}{\sum_{i=1}^{N} S(f_i)}$$
 (9)

均方根频率:Y₂=RMSF

$$= \left[\frac{\sum_{i=1}^{N} f_{i}^{2} S(f_{i})}{\sum_{i=1}^{N} S(f_{i})}\right]^{1/2} (10)$$

频域方差根:Y₃=RFV

$$= \left[\frac{\sum_{i=1}^{N} (f_{i} - f_{c})^{2} S(f_{i})}{\sum_{i=1}^{N} S(f_{i})} \right]^{1/2} (11)$$

谱相关系数: Y₄ = COR =
$$\frac{\sum_{i=1}^{N} [S_1(f_i) - \overline{S}_1] [S_2(f_i) - \overline{S}_2]}{[\sum_{i=1}^{N} (S_1(f_i) - \overline{S}_1)^2 \sum_{i=1}^{N} (S_2(f_i) - \overline{S}_2)^2]^{1/2}}$$
 (12)

J散度: Y₅ = J =
$$\frac{1}{2N} \sum_{i=1}^{N} \left[\frac{S_1(f_1)}{S_2(f_1)} + \frac{S_2(f_1)}{S_1(f_1)} \right] - 1$$
 (13)

谱的欧氏距离:
$$Y_{e} = DS1 = [\sum_{i=1}^{N} (S_{i}(f_{i}) - S_{2}(f_{i}))^{2}]^{1/2}$$
 (14)

- -

声学技术

谱的海明距离:
$$Y_7 = DS2$$

= $\sum_{i=1}^{N} |S_1(f_i) - S_2(f_i)|$ (15)

振动水平: $Y_8 = TOTAL = [\sum_{i=1}^{N} S^2(f_i)]^{1/2}$

(16)

表 2 谱的整体特征量

其中Y₄~Y₇涉及两个谱的比较, 在此 选一个谱为工作谱, 另一个谱为正常类的标 准参考谱。特征FC, RMSF, RFV 反映的 是谱的几何形状特征, 机器状态变化时, 其 振动谱的几何形状一般也要改变。 COR 反 映了两个谱的线性相关程度, 这里经过"去 直"处理后只反映其"动态"部分, 即"动态" 形状的相似性。J反映的是两个谱在特征 空 间的散度指标^{1&1}, DS1和DS2反映的 是两 个谱的"距离"指标。振动水平反映总振动量 级的大小。

(top SP2K)

<u> </u>	<u>ea</u>	FC	RMSF	RFV	COR	J	DS1	DS2	TOTAL
REF		1160	1297	579	1	0	0	0	151.8
GOOD A	1 2 3 4 5 6 7 8 9 10 11 12 13 14	1163 1137 1140 1160 1153 1160 1163 1164 1159 1164 1167 1156 1165 1162	1289 1269 1278 1296 1292 1294 1296 1291 1296 1298 1286 1296 1292	556 563 578 577 569 569 569 569 569 569 569 569 564 566 565	0.906 0.932 0.967 0.916 0.931 0.923 0.926 0.928 0.927 0.926 0.917 0.922 0.925	$\begin{array}{c} 0.0467\\ 0.1092\\ 0.0145\\ 0.0058\\ 0.0192\\ 0.0279\\ 0.0257\\ 0.0256\\ 0.0261\\ 0.0261\\ 0.0238\\ 0.0258\\ 0.0258\\ 0.0262\\ 0.0243\\ \end{array}$	65.02 39.59 28.79 16.68 42.18 38.26 39.82 39.28 38.51 38.93 39.28 41.58 41.03 40.05	$\begin{array}{c} 639.0\\ 366.2\\ 319.4\\ 182.8\\ 390.0\\ 378.9\\ 400.8\\ 391.2\\ 389.0\\ 390.1\\ 403.5\\ 396.3\\ 427.8\\ 399.1 \end{array}$	184.7 156.2 141.0 149.0 150.5 145.7 147.4 150.3 148.5 151.4 152.0 151.0 155.4 154.6
BAD A	15	1170	1298	562	0.919	0.0275	41.32	443.3	153.3
	1	1009	1134	518	0.206	0.430	137.1	1679	152.2
	2	1019	1138	507	0.184	0.458	140.2	1694	153.5
	3	1022	1146	519	0.203	0.429	138.7	1663	152.5
	4	1042	1161	513	0.213	0.412	135.6	1643	148.8
	5	1024	1152	528	0.206	0.414	130.9	1604	140.7
BAD B	1	895	1055	559	-0.198	1.222	241.1	2765	259.2
	2	866	1030	557	-0.235	1.104	226.7	2549	237.0
	3	909	1070	565	-0.173	0.953	202.0	2400	222.1
	4	979	1123	552	-0.063	1.049	238.6	2733	269.3
	5	952	1107	566	-0.111	0.813	183.0	2144	210.1
BAD C	1	1049	1196	575	0.255	0.423	113.4	1392	155.8
	2	1077	1225	583	0.358	0.373	111.3	1377	163.4
	3	1045	1186	562	0.299	0.345	109.0	1318	151.0
	4	1055	1205	583	0.518	0.321	93.71	1186	154.5
	5	990	1152	588	0.440	0.347	110.7	1344	167.5

表 2 给出了测点TOP上2kHz 基带谱的 部分样本的整体特征量。认为特征量的类内 概率密度分布是单峰或者单调的,则 可 用 (17)式定义的可分性准则函数¹⁴ 对各特征 量进行评价,对特征量的状态区分能力进行 排序,选择最佳工作谱型。所给出的8个特 征量的识别能力各不相同,与分析的谱型有 关。

- 10 -

11卷4 期(1992)

 $G = (\overline{X} - \overline{Y})^2 / (\sigma_x^2 + \sigma^2_y)$ (17) 其中, X, Y为{X}, {Y}的均值, σ_x, σ_y , 分别为其方差。总的来说,谱形几何特征量虽 有一定的识别区分能力, 但是不如 Y₄~Y₇ 的识别能力强。振动水平只是对BAD B 类 振动较大的样本有一定的区分能力, 而对其

它类样本效果不佳,且测量散布较大,无明 显的一致性规律。Y₄~Y₇的区分能力较好。 表3给出了不同谱型上Y₄~Y₇对GOOD类 和BAD A类的区分能力。选择测点TOP, 2kHz 基考谱为最佳工作谱型。

确定最佳工作谱型后,进一步进行特征

表 3 特征量对状态GOOD和BAD A的区分能力

(side GOOD-BAD A)

-	谱 型	COR	1	DS1	DS2
	SPLOG20K	165	62	54	72
	SP20K	213	372	21	45
	SP10K	148	257	122	178
	SP5K	106	965	78	103
	SP2K	93	108	44	67
	SP1K	16	83	29	26
	SP500	6	45	6	21

(top GOOD-BAD A)

谱 型	COR	1	DS1	DS2
SPLOG20K	74	56	23	55
SP20K	235	39	68	46
SP10K	264	99	19	30
SP5K	506	1256	50	115
SP2K	1017	412	89	169
SP1K	184	153	27	64
SP500	8	26	7	17

选择,选择所需数目的最佳特征组合为工作 特征。本实验采用散布矩阵准则,进行最佳 特征组合的选择。

定义类间散布矩阵

$$S_{b} = \sum_{i} p(A_{1}) (\vec{m}_{1} - \vec{m}_{0}) (\vec{m}_{1} - \vec{m}_{0})^{*}$$
(18)

总体散布矩阵

 $S_1 = E[(\overrightarrow{X} - \overrightarrow{m_0})(\overrightarrow{X} - \overrightarrow{m_0})^{t}]$ (19) 其中, $p(A_1)$ 为类概率, m_1 为i类的平均特 征向量, m。为所有样本的整体平均特征向 量。

行列式形式的散布矩阵准则为^[4]: $J_1 = det(S_1^{-1}S_b)\Pi\lambda_1$ (20)

i

J₁越大可分性就越好。λ₁是S₄S₅的本征 值。 使J₁最大的子集就作为最佳的分类特 征 组 合。计算散布矩阵不受模式分布形式的限制, 但需足够数量的模式样本才能获得有效的结 果。表4给出了Y₄~Y₇中选出两个特征 组 合为工作特征时两两的散布矩阵准则。可见 测点TOP处,J和DS2的组合为最佳特征 组

声学技术

- 11 -

表 4 散布矩阵准则(2kHz基带谱)

合,COR和J的组合次之。图 3 给出了TOP 处2kHz基带谱,以J和DS2为特征的状态 模式分布图。图中的模式样本为表 2 中给出 的样本,可见以J和DS2 为特征可清楚地将 四类模式区分开来。图 4 为以J和COR 为特 征的模式分布图,可见,区分效果不如图 3, 尤其是BAD A和BAD C两类的界限不十分 明显。

图3模式分布图(测点 TOP, 2kHz基带谱)

4 模式分类器设计

故障诊断中设计故障模式分类器时有两 点因素要考虑:1.机器在每一确定状态下运 行时所表现出来的特征基本上具有确定的因 果关系,是个确定性向量,而非随机向量, 2.每一确定状态其特征量的分布细节难以获 得或不可能获得。基于这两点考虑,在故障 诊断的模式识别中往往难以直接运用统计识 别方法。当可以获得足够多的训练样本,且 这些训练样本能充分反映类特征分布时,可 以用可训练的确定性分类器。当无法获得足 够的训练样本,而只能获得各类的物理样板 时,可用模糊识别分类器。

在本试验中采用可训练的确定性线性分 类器,对于非线性可分的情形,可通过变换 化为线性可分的情形,因此只讨论线性分类 器并不失一般性。线性判别函数的一般形式 为:

$$d(\mathbf{x}) = W_1 X_1 + W_2 X_2 + \dots + W_n X_n$$
$$+ W_{n+1} = \vec{W} \cdot \vec{X}$$
(21)

其中, X = (X₁, X₂, …, X_n, 1)为增广 模式向量

对两类情形 ω_1 类和 ω_2 类,可用d(x)=0 来 分开两类,规定

$$d(\vec{x}) = \vec{W} \cdot \vec{X} = 0, \quad \vec{X} \cdot \omega_1 \quad (22)$$

权向量W的求解采用感知器算法^{14]}训练迭代,第K+1次迭代值为

$$\overrightarrow{W}(k+1) = \overrightarrow{W}(k) + C \cdot \begin{pmatrix} 0 \\ \overrightarrow{X}_{k} \end{pmatrix}$$
(23)

C为正的权向量修正因子,初始向量 W(1) 可任选。若模式是线性可分的,上式是收敛

11卷4期(1992)

的。若不是线性可分的,则上式结果来回摆 动,不收敛。用全部模式样本训练过一轮后, 只要有一个样本是误判的,则需进行第二轮 迭代,即用全部模式再训练一次,建立新的 W,如此不断反复直到用全部模式进行训练 都能获得正确分类的结果时迭代结束。如下 给出了部分谱型上正常类与故障类模式分类 器的训练结果,特征量为: $X_1 = COR$, X_2 = J, $X_3 = DS1$, $X_4 = DS2$,训练样本数正 常类15个,故障类15个。

表 5 正常类与故障类模式分类器

谱 型	W 1	W 2	W 3	W 4	W 5
TOPSPLOG 20kHz	27.27	- 2.732	484.4	- 69,90	24
TOPSP 2kHz	144.1	-10.57	999.9	-90.30	128
SIDESPLOG 20kHz	350.8	-13.04	-7.500	- 0.7027	322

对多类模式识别的情形,根据模式分布 图这里采用ω₁/ω,两分法,即一个判别界面 只能分开两个类别,但不能用它把其余所有 类别分开。

$$d_i, (\vec{x}) = \vec{W}_i, \cdot \vec{X}', \quad d_i = -d_i$$
(24)

若 $d_{1i}(\vec{X}) > 0$, $A_i = i 则 \vec{X}_i \in \omega$

分开M类模式要M(M-1)/2个判别函数,训 练迭代法同两类的情形。在TOPSP2kHz的 谱型上,以X₁ = J, X₂ = DS2,对GOOD, BAD A, BAD B, BAD C 四种模式求解 模式分类器,训练样本由表 2 给出。表 6 给 出了训练迭代结果,模式分布图由图 3 给 出。

燛 (6	Z	类	頁	式	分	类	器

类1	类 2	W 1	W 2	W 3	
 GOOD	BAD A	- 136.3	- 0.9923	1375	
GOOD	BAD B	-214.5	-1.502	1263	
GOOD	BAD C	-81.01	-0.8016	562	
BADA	BAD B	- 2253.7	-1	2899	
BADA	BAD C	-461.9	1	- 1341	
BADB	BAD C	726.4	1	- 1716	

采用感知器算法的确定性线性模式分类 器是一种适用面广而且容易实现的分类器, 基本上能满足实用要求。在实际应用时,首 先要获得一定数量的训练样本,设计出初始 分类器,然后投入实际运行,在运行中根据 机器的失效历史进行调整改进,不断再训练, 逐渐达到完善。

5 结束语

蜗杆蜗轮传动机构是一种不同於齿轮传 动机构的比较特殊的传动装置,由于其传动 装置的特殊性,仅从常用的谐波分析法难以 准确地判断其故障的发生和类型。针对这种 情形,本文采用谱的整体特征量分析其故障 特性,得到了比谐波分析明显改善的结果。 采用多个特征量的模式识别技术,特别是在 线模式识别是机器故障诊断方法的发 展 方 向,本文在对蜗杆传动机构谱的整体分析的 基础上,采用模式识别技术,设计了蜗杆传 动装置的故障模式分类器,讨论了具体的最 佳特征选择方法和分类器的设计及训练求解

(下转6页)

声学技术

— 13 —

条件。对合并后的2048个样本作傅里叶变换, 所得"常规的"实际频谱如图1(C) 所示,频 率变化范围为 0~13kHz, 分辨率仍保持为 6.3Hz。可以看出,在测试频率范围内,图 1(b)和图1(C)实际上几乎完全相同。细微的 差别来源于两通道不全同引起的随机误差。

与此相类似,如果带通滤波器的中心频 率改变而为10kHz,相应的结果如图2所示。 可以看出,图2(b)和图2(C)也接近完全相 同。

以上表明,采用带通滤波器后可以突破 传统采样条件的限制,从而可以用低速采样 的A/D板来分析稳态高频信号,采样总时间 与频谱分辨率保持与正常使用条件下的情况 相同。

2 采用声延迟

在声学测量中往往需要作多点同 步 测 量。在给定测点A处, 频率为 $f = vf_b + f_c$ 的 高频信号与频率为f。的低频信号采样后混叠 在一起。当声波传播一定距离S而至 另一测 点B处时, 高低频信号的相位变化是不 相同 的。在频域中A、B两测点处所得的频谱 按 不同的规律变化。对于频率为f的高频信号, 傅里叶系数间满足:

 $p_B(f) = p_A(f)e^{-j(2\pi fs/c)}$ (6a) 而对于频率为f。的低频信号,则得

 $p_{B}(f_{0}) = p_{A}(f_{0})e^{-j(2\pi f_{0}s/c)}$ (6b) 式中, c为声速。因此, 尽管在A处频 率为 f和f_o的傅里叶系数相同或相共轭,在测点B 处两者一般是不相同的。把多点测量所得的 数据经适当处理后,可以把频谱混叠在一起

(上接13页) 方法。希望这些工作能对实际中类似于蜗杆 蜗轮传动装置的这一类特殊机械的故障诊断 能有所启发和帮助。

参考文献 1.鲍明, MDS-1轴承故障诊断系统,振动测试

的高低频信号区分开来。

3 采用延迟重复采样

分析噪声信号时,由于信号具有随机性, 重复采样所得数据一般并不具有重复性,因 此很难对信号本身获得根本性的改善,只能 通过作某种统计平均而减小其随机误差。如 果对信号源加以控制, 使它能够重复再现, 并能精确地确定其起始点,则采用信号处理 技术就具有很大的优越性。这类具有再现性 的噪声信号源至少可以用两种方法实现:一 是用一圈周而复始进行放音的磁带, 在磁带 上录有噪声信号并录有作为起始点标志的窄 脉冲信号;二是采用伪随机噪声信号技术, 按一定规律发出不等间隔的脉冲信号。它可 以重复,对其起始点可以识别并准确定位。

采用这类信号源后, 重复采样所得数据 原则上是可重复的。如果我们把前后两次采 样的起始点延迟一段固定的时间τ,并设

$$\tau = T/N \tag{7}$$

式中,T为A/D板采样的时间间隔,N 为正 整数,把重复N次采样所得的样本合并在一 起,使样本数增加N倍,这相当于使A/D板 的采样率提高N倍,从而可以按通常的 步骤, 用低速采样A/D板直接分析稳态高频信号。

参考文献

1.W. D. Gregg, Analog and Digital Communication John Wiley and Sons. 1977.

2. 刘文生,李锦林,取样技术原理与应用,科 学出版社, 1981.

3.杨福生,戴先中,带通信号的采样定理,信 号处理, 1986; 2(1); 58-61.

与诊断, 1989, 9(4):12

2.汤和,用噪声谱分析法定量诊断齿轮磨损, 天津大学学报,1989,22(2):4 3.何正嘉,屈梁,生信号功率谱的再处理方法, 动态分析与测试技术,1989,(3)

— <u>6</u> —

^{4.}蔡元龙,模式识别,西北电讯工程学院出版 社,1986.6