引用格式: 张伟, 董阳泽, 张刚强, 等. 一种基于广义互相关的水声直扩信号检测方法[J]. 声学技术, 2021, 40(1): 44-48. [ZHANG Wei, DONG Yangze, ZHANG Gangqiang, et al. A detection method of underwater acoustic DSSS signal based on generalized cross-correlation[J]. Technical Acoustics, 2021, 40(1): 44-48.] DOI: 10.16300/j.cnki.1000-3630.2021.01.007

一种基于广义互相关的水声直扩信号检测方法

张伟,董阳泽,张刚强,刘俊凯,张俊清 (上海船舶电子设备研究所,上海 201108)

摘要:直扩信号因其低功率谱密度特性使得检测十分困难,针对传统自相关法在低信噪比条件下检测性能急剧下降 的问题,在分析了直扩信号自相关特性的前提下,提出一种基于广义互相关估计的直扩信号检测方法。首先对接收 信号分段并对相邻信号段分别进行广义互相关估计,估计结果采用二阶矩非相干积累,提取相关峰获得检测统计量, 将检测统计量与门限比较,判定信号是否存在。通过计算机仿真对比了改进自相关检测法与文中方法的检测性能, 仿真结果表明:该方法相比于改进自相关检测法信噪比容限降低了5dB,适用于低信噪比条件下的水声直扩信号检 测。水池试验处理结果也验证了该方法的实用性。

关键词: 直扩信号检测; 广义互相关; 非相干积累; 相关峰提取

中图分类号: TB567 TN911.23 文献标志码: A

A detection method of underwater acoustic DSSS signal

based on generalized cross-correlation

ZHANG Wei, DONG Yangze, ZHANG Gangqiang, LIU Junkai, ZHANG Junqing (Shanghai Marine Electronic Equipment Research Institute, Shanghai 201108, China)

Abstract: Direct sequence spread spectrum (DSSS) signal is difficult to detect due to its low power spectral density characteristics. Aiming at the problem that the performance of traditional auto-correlation detection method for DSSS signal degrades sharply under the condition of low signal-to-noise ratio (SNR), according to the analysis of auto-correlation characteristics of DSSS signal, a detection method based on generalized cross-correlation (GCC) estimation is proposed. Firstly, the received signal is segmented and the generalized cross-correlation estimation for adjacent segmented signals is performed successively, then the estimated results are processed by non-coherent accumulation of the second-order moment to extract cross-correlation peaks as detection statistics, which are compared with a certain threshold to determine whether a signal exists or not. The comparison between the performances of the improved auto-correlation detection method and the proposed method in this paper is made by computer simulation, and the result shows that the SNR tolerance of the proposed method is reduced by 5 dB compared with the improved auto-correlation method, and the proposed method can detect DSSS signals under low SNR condition. The processing result of pool test data also verifies the practicability of the proposed method.

Key words: direct sequence spread spectrum signal detection; generalized cross-correlation(GCC); non-coherent accumulation; cross-correlation peaks extraction

0 引 言

直扩信号(Direct Sequence Spread Spectrum, DSSS)具有较低的截获概率和较强的抗衰落能力, 且易于组网,因而被广泛应用于水声网络通信中^[1]。 非合作条件下的水声直扩信号因其低功率谱密度 特性使得检测十分困难^[2]。

传统自相关法通过将接收信号与自身延时后的

通信作者:张伟, E-mail: zhangwei726726@163com

信号作相关积分处理并搜索相关峰达到检测的目的, 在低信噪比条件下,相关峰容易被噪声淹没,不易提 取。文献[3]在自相关检测法的基础上,提出一种基于 分段集平均区域统计量的改进自相关检测方法,相较 于传统自相关检测法,信噪比容限降低了约3dB。

文章编号: 1000-3630(2021)-01-0044-05

本文提出一种基于广义互相关的水声直扩信 号检测方法。由理论分析可知,广义互相关加权函 数能够增强信号中信噪比较高的频率成分,锐化相 关峰,抑制噪声^[4-5],且广义互相关运算在频域进行, 可以通过快速傅里叶变换来提升算法的效率。通过 对相邻分段信号互相关估计结果采用非相干积累 平均二阶矩处理,提取相关峰并与检测门限比较, 可以在低信噪比条件下检测到水声直扩信号,具有

收稿日期: 2019-12-24; 修回日期: 2020-01-16

作者简介:张伟(1994-),男,江苏扬州人,硕士研究生,研究方向为水 声对抗技术。

一定的实用价值。仿真结果和水池试验结果都验证 了本文方法的有效性。

1 直扩信号数学模型

设信息码符号 $a_n \in \{+1, -1\}$,信息码之间相互独 立,对应的传输信号为a(t),数据速率为 R_b ,码元 宽度 $T_b=1/R_b$, a(t)的表达式为

$$a(t) = \sum_{n=0}^{\infty} a_n g_b(t - nT_b) \tag{1}$$

其中, g_b(t) 为门函数, 表达式为

$$g_b(t) = \begin{cases} 1, & 0 \leq t \leq T_b \\ 0, & \ddagger \psi \end{cases}$$
(2)

设一个周期扩频码序列的位数为 N, 扩频码符 号 $c_n \in \{+1, -1\}$, 码片速率为 R_c , R_c 通常是 R_b 的整数 倍, 每一码片宽度 $T_c = 1/R_c$ 。周期扩频码序列表示为 $c(t) = \sum c_{(ample)} g_c(t - nT_c) = \sum c_{(a+1)} g_c(t - nT_c)$ (2)

$$\sum_{n} c_{(n \mod N)} S_c (t \mod t_c) = \sum_{n} c_{([\frac{t}{T_c}] \mod N)} S_c (t \mod t_c)$$
(3)

其中, $g_c(t)$ 为门函数,表达式为

$$g_c(t) = \begin{cases} 1, & 0 \le t \le T_c \\ 0, & \notin t \end{cases}$$
(4)

信号扩频过程是在发送端把要传输的信号与 伪随机序列相乘,生成的发送序列速率近似于伪随 机序列,从而使传输信号的频谱展宽到一个很宽的 范围,即:

$$d(t) = a(t)c(t) \tag{5}$$

对 *d*(*t*) 采用二进制相移键控(Binary Phase Shift Keying, BPSK)载波调制,调制后的信号为

$$s(t) = d(t) \cos(2\pi f_c t) = a(t)c(t) \cos(2\pi f_c t)$$
 (6)
设信道中噪声为 $n(t)$,则接收端信号为
 $r(t) = s(t) + n(t)$ (7)

2 自相关检测法

由式(3)可知,扩频调制采用的伪随机序列周期 性重复,因此直扩信号具有周期性,可利用自相关 检测法提取周期特征,实现对直扩信号的检测。

2.1 传统自相关检测法

考虑含噪直扩接收信号,如式(7)所示,假设 信号 *s*(*t*) 与噪声 *n*(*t*) 互不相关,则含噪接收信号 *r*(*t*) 的自相关函数为

$$R_{r}(\tau) = \mathbb{E}\{r(t)r(t+\tau)\} =$$

$$\mathbb{E}\{[s(t)+n(t)][s(t+\tau)+n(t+\tau)]\} =$$

$$R_{s}(\tau)+R_{n}(\tau) =$$

$$\frac{A^{2}}{2}R_{a}(\tau)R_{c}(\tau)\cos(2\pi f_{c}\tau)+R_{n}(\tau) \qquad (8)$$

其中: $R_a(\tau) = E[a(t)a(t+\tau)]$ 为信息码的自相关函数; $R_c(\tau) = E[c(t)c(t+\tau)]$ 为 m 序列的自相关函数,且 $R_c(\tau)$ 的相关峰位于 m 序列周期的整数倍处; $R_n(\tau)$ 为加性高斯白噪声的自相关函数,当时延 $\tau \neq 0$ 时, $R_n(\tau) \approx 0$ 。

图 1 是在信噪比(Signal to Noise Ratio, SNR)为 -5、-10、-15 dB 条件下直扩信号的自相关绝对值 平方归一化的结果,扩频码周期为 15.5 ms。

different signal-to-noise ratios

从图 1 可见,当接收信号 SNR 较高时,扩频 码整数倍周期处会出现相关峰,随着信噪比的降 低,相关峰逐渐被噪声淹没,无法检测到直扩信号。

2.2 改进自相关检测法

传统自相关法极易受噪声的影响。在自相关检测法的基础上,文献[3]提出一种基于分段集平均区域统计量的改进自相关检测方法。图2为改进自相关检测法流程图。

将接收信号利用窗函数分段,相邻信号段允许 重叠^[3],N段信号分别为*x_i(t)*,*i*=1,2,…,N,*R_i(τ)*为 第*i*段信号自相关结果,对每段信号分别进行相关 积分并求和取平均得到检测函数*J*(*τ*):

Fig.2 Flow chart of improved autocorrelation detection method

(9)

$$I(\tau) = \frac{1}{N} \cdot \sum_{i=1}^{N} R_i(\tau)$$

改进自相关检测法相比于传统自相关检测法, 信噪比容限能够降低约3dB。

3 广义互相关检测法

广义互相关的概念来自于时延估计。通过求出 两个信号的互功率谱,采用加权函数对互功率谱给 予一定的权重进行前置滤波,以增强信号中信噪比 较高的频率成分,抑制噪声的影响⁽⁴⁾,最后通过逆 傅里叶变换变换到时域,得到信号的互相关函数。 加权函数的意义在于能够使相关峰得到锐化,提高 检测性能^[5]。

3.1 广义互相关

根据维纳-辛钦定理,信号互相关函数与其互 功率谱密度函数互为傅里叶变换^[5], *x*₁(*t*) 与 *x*₂(*t*) 的 互相关函数可以表示为

$$R_{12}(\tau) = \frac{1}{\pi} \int_0^{\pi} G_{12}(f) \mathrm{e}^{\mathrm{i}2\pi f \tau} \mathrm{d}f$$
(10)

其中, $G_{12}(f)$ 为 $x_1(t)$ 与 $x_2(t)$ 的互功率谱密度函数。

将 x₁(*t*) 与 x₂(*t*) 经过加权函数前置滤波后,得到 互功率谱密度函数为

$$G'_{12}(f) = H_1(f)H_2^*(f)G_{12}(f)$$
(11)

其中: $H_1(f)$ 和 $H_2(f)$ 为滤波函数; $H_2^*(f)$ 为 $H_2(f)$ 的共轭。

经过前置滤波后 x₁(t) 与 x₂(t) 的广义互相关函数为

$$R'_{12}(\tau) = \frac{1}{\pi} \int_0^{\pi} \psi(f) G_{12}(f) \mathrm{e}^{\mathrm{i}2\pi f \tau} \mathrm{d}f$$
(12)

其中: $\psi(f) = H_1(f) H_2^*(f)$ 为频域权重。

本文采用函数 $\psi(f) = |G_{12}(f)|$ 进行频域加权, $x_1(t) = x_2(t)$ 的广义互相关函数为

$$R'_{12}(\tau) = \frac{1}{\pi} \int_0^{\pi} |G_{12}(f)| G_{12}(f) e^{j2\pi f \tau} df$$
(13)

图 3 是在信噪比为-5、-10、-15 dB 条件下直 扩信号的广义互相关绝对值平方归一化的结果,扩 频码周期同样为 15.5 ms。

与图1传统自相关估计结果相比,能够看出当 信噪比为-15dB时,图3中相关峰仍然清晰可见, 表明广义互相关的检测性能更好。且广义互相关运

图 3 不同信噪比下直扩信号广义互相关结果

Fig.3 Generalized cross-correlation functions of DSSS signals under different signal-to-noise ratios

算在频域进行,可以通过快速傅里叶变换来提升算 法的效率。

3.2 非相干积累平均二阶矩

由于实际检测时间为有限长,信号的自相关为 估计值,传统自相关检测法极易受噪声的影响,当 信噪比较低时,一些相关峰会被噪声所淹没,难以 得到检测统计量。

本文在时域相关法的基础上,首先将接收信号 分段,分别计算相邻信号段的广义互相关估计,经 过 N 次非相干积累平均后,由于噪声之间的非相关 性,噪声的方差将减小为原来的1/N,而信号互相 关峰值不变,因此可以通过非相干积累提高检测性 能^[6]。由于直扩信号受 BPSK 调制的影响,相关函 数存在负值,因此,用非相干积累平均互相关二阶 矩来消除负值的影响,定义为

$$\rho(\tau) = \frac{1}{N-1} \sum_{i=1}^{N-1} |R_{i,i+1}(\tau)|^2$$
(14)

其中: *N* 为信号的分段数; |*R*_{*i*,*i*+1}(*τ*)² 为第 *i* 段和第 *i*+1 段信号的广义互相关结果绝对值的平方。

3.3 相关峰提取

非合作水声直扩信号的参数是未知的,当信噪 比较低时,相关峰受噪声的影响,极容易造成误 判^[7]。当不能准确判断相关峰间隔时,容易错误提 取噪声峰值作为检测统计量。

非合作检测中,由于扩频码的周期 T_b 未知,无 法在相关函数中按照间隔 T_b 提取相关峰。本文采用 相关峰提取方法,不仅可在低信噪比条件下得到检 测统计量,而且能够实现相关峰的自动提取^[7]。假 设扩频码周期为 \tilde{T}_b ,根据式(15)可知,当 $\tilde{T}_b=T_b$ 时, 检测统计量 $J(\tilde{T}_b)$ 取最大值。

$$J(\tilde{T}_{b}) = \max_{\tilde{T}_{b} \in (0,T)} \left[\frac{1}{K} \sum_{i=1}^{K} \rho(i\tilde{T}_{b}) \right]$$
(15)

其中:T为假设的最大扩频码周期;K为提取的相

关峰个数; ρ为接收信号非相干积累平均互相关二 阶矩。

3.4 本文算法原理

结合 3.1~3.3 节,本文提出一种非合作水声直 扩信号检测方法,具体流程框图如图 4 所示。

算法具体步骤如下:

(1) 将接收到的数据分成 *K* 段,每段数据长度 为 *M*。

(2) 对相邻信号段 x_i(t) 和 x_{i+1}(t) 进行快速傅里 叶变换,并对 x_i(t) 的快速傅里叶变换求共轭,得到 互功率谱密度函数 G_{i+1}(ω)。

(3) 对互功率谱密度函数进行频域加权,再进行逆傅里叶变换,求得广义互相关函数*R*_{i+i}(τ)。

(4) 对每次广义互相关结果 R_{i,i+1}(τ) 计算其非相 干积累平均二阶矩 ρ(τ)。

(5) 根据式(15)提取相关峰得到检测统计量 $J(\tilde{T}_{b})$ 。

(6) 根据式(16)进行检测判决,如果统计量 J 大于门限 T_{HR},判定接收数据中存在直扩信号,否则 判定没有信号。

$$\begin{cases} H_0: r(t) = n(t), & J < T_{\rm HR} \\ H_1: r(t) = s(t) + n(t), & J \ge T_{\rm HR} \end{cases}$$
(16)

Fig.4 Flow chart of the proposed detection method

4 仿真分析与水池试验

4.1 仿真分析

仿真参数如表 1 所示。仿真中一个码元的采样 点数为 1 488,分段数据长度通常为一个码元采样 点数的 5~20 倍。因此仿真中设置分段数据长度 *M*=22 320,分段数 *K*=12。

为了确定检测门限,生成与接收数据长度相同

	表 1 发射信号仿真参数	
Table 1	Simulation parameters of transmitting s	sig

-	
载波频率/kHz	采样频率/kHz
8	96
PN 码阶数	扩频码周期/ms
5	15.5
	载波频率/kHz 8 PN 码阶数 5

但功率不同的高斯白噪声,使得信噪比分布为 -25~0 dB。同时假设信号不存在和存在两种情况 下相关峰均值和相关域整体幅度均值的比值分别 为*J_{Han}*和*J_{Ha}*^[8]。

信号不存在时,在不同的噪声功率和给定的虚 警概率 P_{FA} 条件下,分别进行 N 次蒙特卡洛(Monte Carlo)仿真,得到 $J_{H_{0},n}$, $n=1,2,\cdots,N$,对 $J_{H_{0},n}$ 进行降 序排列,得到 $J'_{H_{0},n}$,根据式(17),确定检测门限 R_{TH} 的取值范围。

$$J'_{H_0,n\,\lceil N\cdot P_{\mathrm{FA}}\rceil+1} < R_{\mathrm{TH}} \leq J'_{H_0,n\,\lceil N\cdot P_{\mathrm{FA}}\rceil}$$
(17)

式中: []表示向上取整。

信号存在时,在不同的噪声功率和给定的虚警 概率 P_{FA} 条件下,分别进行 N 次 Monte Carlo 仿真,得到 $J_{H_1,n}$, $n=1,2,\cdots,N$ 。根据式(18),计算给定虚警 概率时不同信噪比条件下的检测概率 P_{D} :

$$P_{\rm D} = P(J_{H_{\rm I},n} \ge R_{\rm TH}) \tag{18}$$

利用上述方法分别得到自相关检测法、改进自 相关检测法和本文方法在不同虚警概率下的检测 概率,如图5所示。

分别研究了自相关检测法、改进自相关检测法 和本文方法在虚警概率为 0.05 和 0.01 时,直扩信 号的检测概率随信噪比的变化曲线。虚警概率相同 时,本文方法相比于改进自相关检测法信噪比容限 降低了 5 dB,对直扩信号的检测性能大大提升。在 虚警概率为 0.05 时,本文方法在信噪比大于-18 dB 仍能获得很好的检测效果。

4.2 水池试验

通过水池试验来验证本文方法的有效性。在试验中,确定检测门限的方法是:在接收机检测信号前,采集1000段与接收信号长度相同的环境噪声, 采用与接收信号相同的算法参数,分别计算每段噪 声相关峰峰值和相关域整体幅度均值的比值,对比 值进行降序排列,在给定的虚警概率条件下,根据 式(18),确定检测门限。

发射信号参数如表1所示。发射换能器和接收 换能器间距为6m,布放深度为3m,水池平均深 度为8m。图6为接收信号时域波形。

Fig.6 Time domain graph of received signal

图 7 为本文检测方法处理结果,处理中设置分段数据长度 *M*=22 320,分段数 *K*=3。

Fig.7 The processing result of the proposed method to the received signal

由于水池环境噪声较小,可以通过对试验接收 信号叠加高斯白噪声来重构信号,验证低信噪比条 件下本文方法的检测性能。利用式(19)来估计叠加 高斯白噪声后待检测信号的信噪比 R_{sn}:

$$R_{\rm SN} = 10 \, \lg \left\{ \frac{\mathrm{E}[r(t)^2] - \mathrm{E}[n(t)^2]}{\mathrm{E}[n(t)^2]} \right\}$$
(19)

图 8 为对接收信号叠加高斯白噪声后, 信噪比为-15 dB 时本文检测方法的处理结果。

图 8 SNR 为-15 dB 时本文方法处理结果 Fig.8 The processing result of the proposed method to the received signal with a signal to noise ratio of -15 dB

从图 8 可以看出,叠加高斯白噪声后,在信噪 比为–15 dB 时,相关峰仍然清晰可见,验证了本文 算法的有效性与实用性。

5 结论

本文提出了一种基于广义互相关的水声直扩 信号检测方法。通过广义互相关加权运算,可以锐 化相关峰,抑制噪声。通过对相邻分段信号互相关 运算结果采用非相干积累平均二阶矩处理并提取 相关峰,可以实现低信噪比条件下的水声直扩信号 检测,具有一定的实用价值。仿真结果和水池试验 处理结果都验证了本文方法的有效性与实用性。

参考文献

- [1] 殷敬伟. 水声通信原理及信号处理技术[M]. 北京: 国防工业出版 社, 2011.
- [2] 刘孟孟,张立民,钟兆根.直接序列扩频信号的盲检测[J]. 电子设 计工程, 2012, 20(20): 7-9.
 LIU Mengmeng, ZHANG Limin, ZHONG Zhaogen. Blind detection of DSSS signal[J]. Electronic Design Engineering, 2012, 20(20): 7-9.
- [3] 张铮. 非合作水声直扩信号检测方法对比研究[J]. 舰船电子工程, 2019, 39(3): 156-161.
 ZHANG Zheng. Research on detection method of non-cooperative underwater DSSS signals[J]. Ship Electronic Engineering, 2019, 39(3): 156-161.
- [4] KNAPP C, CARTER G. The generalized correlation method for estimation of time delay[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1976, 24(4): 320-327.
- [5] 朱超, 屈晓旭, 娄景艺. 基于广义互相关的时延估计算法研究[J]. 通信技术, 2018, 51(5): 1030-1035. ZHU Chao, QU Xiaoxu, LOU Jingyi. Time-delay estimation algorithm based on generalized cross-correlation[J]. Communications Technology, 2018, 51(5): 1030-1035.
- [6] 张天琪,周正中.直扩信号伪码周期的谱检测[J].电波科学学报,2001,16(4):518-521,528.
 ZHANG Tianqi, ZHOU Zhengzhong. A new spectral method of periodic detection of PC sequence in lower SNR DS/SS sig-nals[J]. Chinese Journal of Radio Science, 2001, 16(4):518-521,528.
- [7] 王晓燕,方世良,朱志峰. 一种基于自相关估计的水声直扩信号检测方法[J]. 东南大学学报(自然科学版), 2010, 40(2): 248-252.
 WANG Xiaoyan, FANG Shiliang, ZHU Zhifeng. Detection method of acoustic direct-sequence spread-spectrum signal based on auto-correlation estimation[J]. Journal of Southeast University (Nat-ural Science Edition), 2010, 40(2): 248-252.
- [8] 张刚强,董阳泽,刘平香.基于功率谱平均的水声直扩信号倒谱检测方法[J]. 哈尔滨工程大学学报, 2010, 31(7): 863-867. ZHANG Gangqiang, DONG Yangze, LIU Pingxiang. Detection of underwater acoustic DSSS signals using the cepstrum method based on a power spectral density average[J]. Journal of Harbin Engineering University, 2010, 31(7): 863-867.