全波列声波测井评价低比重水泥 固井质量向题探讨

章成广 王冠贵

(江汉石油学院)

本文通过模拟计算套管井中理论波型,分别讨论了钢--水泥--地层胶结好坏三 种情况,认为全波列声波测井不仅能评价低比重水泥固结质量,而且还能解决水泥 胶结第二界面问题。这对石油工业勘探开发过程中,提高固井质量、防止油层污染 ,油水窜流等现象有着十分重要意义。

一、引 言

为了防止油田污染,保护油层,近来发 展了一种低比重高强度水泥浆固井新工艺。 在国外1978年就采用了泡沫水泥,这种水泥 是通过对水泥浆充氮气使成泡沫状来降低它 的比重。国内目前也开始研究用玻璃微珠作 为降重剂配制成水泥浆,它具有比重低,强 度高的特点,能减少油层污染,满足井下作 业。象泡沫水泥还具有触变性好的特点,特 别适用于封堵漏失带和空洞、也能改善地层 的分隔,并能使套管和水泥、水泥和地层之 间保持接触、在国外已开始广泛应用。

由于低比重水泥的应用对测井检测是个 挑战,常规水泥胶结测井方法如声幅测井,

很好。

参考文献

- (1) ephir J and Maklad N F Digital scan Converter in diagnostic ultrasound imaging Proc IEEE67. 654-664(1979)
- (2) Jonathan ophir and Johan M Brinch Moire Undersampling artifacts in

是否仍有效?由于低比重水泥性能与常规充 填水泥性能不同,评价方法也要修改。国外对 比已作了一些探讨,在国内还未见过这方面 资料。

另外,第二界面问题一直是个悬而未决 的问题,过去用变密度测井方法作定性评价, 起到一定作用。本文在这些方面作了初探, 认为用全波列声波测井能解决第二界面问 题。下面分理论模型和计算的波型与水泥固 井关系二部分来讨论。

二、套管井中理论模型

在套管井中,中心层为泥浆,最外层是 地层,之间有钢管、水泥环及流体环形隙。 取柱坐标系Z轴与井轴重合,点声 源 S(W)

digital Ultrasound images Ultrasound imaging 4.311-320(1982)

(3) K Ito et al A real—time Ultrasonic diagnostic system for dynami cand Still images; Wireless echoviion JEE Dec1977

-35---

声 学技术

置于坐标系原点,则离发射器Z处 井内声场 位移函数为

$$\phi(\mathbf{r}, \mathbf{z}, \mathbf{t}) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} d\mathbf{w} e^{-i\mathbf{w}\mathbf{t}} S(\mathbf{w})$$
$$\int_{-\infty}^{\infty} d\mathbf{k} e^{i_k^2} [k_0(l_1 \mathbf{r}) + A_1 I_0(l_1 \mathbf{r})](1)$$

式中Ko、Io为虚宗量贝塞尔函数,

 $l_1 = \sqrt{K^2 - \frac{W^2}{v_f^2}}$ 是泥浆波波数在径向r上

分量, A₁是与径向各层介质性有关参数。 (1)式中入射波部分沿实轴积分可得到

$$\int_{-\infty}^{\infty} dk e^{ik^{2}} ko(l_{1}, r) = \frac{\pi exp\left(\frac{iw}{vf}\sqrt{r^{2}+z^{2}}\right)}{\sqrt{r^{2}+z^{2}}}$$
(2)

则在井轴上(r=0)处势函数有 $\phi(o, z,t) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} dw e^{-i \nabla t} S(W)$

$$\left[\frac{\pi \exp(\frac{iw}{V_f}Z)}{Z} + 2\int_{-8}^{\infty} dk e^{ik^2}A_1\right]$$
(3)

考虑到支割线积分在复平面内,引入频 率虚量Wi,则有

$$\phi(o, z, t) = \frac{1}{2\pi} \int_{0-iw_{r}}^{\infty - iwi} dw e^{-iwt}$$

$$S(W) \left[\frac{\exp(\frac{iW}{v_f}Z}{Z} + \frac{2}{\pi} \int_0^\infty dk e^{ik^2} A_1 \right]$$

由(4)式用离散波数法和二维付氏快变 技术 就能得到套管井中合成波型。

在实际计算时要考虑声波衰减,引入复 速度

$$V = V (W_0) \left[1 + \frac{1}{\pi Q} \log(\frac{W}{W_0}) - \frac{i}{2Q} \right]$$
(5)

式中Wo为中心频率,Q为衰减系数有关 部

质因子。计算(4)式时关键要求 得 系 数 A_1 值。按文献[3]提供的,在钢一水泥一地层 胶结好的情况下,由于固体一固体界面应力、 位移是连续的,井中不存在横波,地层中不 存在反射波,得到式中 I_0 、 I_1 、 K_0 、 K_1 分别 为一类、二类虚宗量贝塞尔函 数, ρ_1 、 r_1 分 $A_1 = \frac{l_1k_1(l_1r_1)F_1 - \rho_1 w^2 k_0(l_1I_1)F_2}{l_1r_{10}(l_1r_1)F_1 + \rho_1 W^2 I_0(l_1r_1)F_2}$

$$F_{1} = G_{13}G_{43} - G_{31}G_{43}$$

$$F_{2} = G_{13}G_{11} - G_{11}G_{43}$$
(6)

别为套管内径和泥浆密度, G₁₁ 是与 径向各 层介质及频率有关的矩阵中 元素, 可由应 力、位移向量之间关系求得, 见附录*。

如果井与地层有流体环形隙存在,求A 变得复杂,因为流体一固体界面切应力为0、 切向位移是不连续的,因此A,只能解每层边 界条件方程得到。

三、合成波型与固井 质量关系

针对目前出现的低比重水泥浆,我们分 三种情况: 1.流体一钢一水泥一地层2.流体 一钢一流体一水泥一地层3.流体一钢一水泥 一流体一地层进行了讨论。前者相当于水泥 胶结好情形、后二者相当于自由套管、部分 胶结情形。我们还讨论了水泥密度 ρ、速度 V、衰减量Q对波型幅度影响、以便找出它 们间关系进行评价。

计算合成波型、经向上各层介质参数如 下表:

计算的频率范围为(0,25)延期时 间 为 4000微秒,中心频率为13千赫,源距为10英 尺。考虑到计算速度取dk=0.1,这对波型 分析是够了。

1. 流体一钢管一水泥一地层

如图(1)按表1计算得到波型。地层纵 波、横波部分的波形清晰,幅度较大,到达时 间分别是738微秒、1265微秒左右。泥浆波大

8卷3期(1989)

表 1

参数	外 径 r (英尺)	纵波速度 Vp (千英尺 機秒)	横波速度 Vs (千英尺/ 微秒)	密度	纵品 因 Qp	横波品 质因子 Qs
流体	0.154167	5,5	0	1.2	20	0
钢管	0.18750	20	11	7.5	1000	1000
水泥	0.33330	9,25	5,67	1,35	50	50
地层	无限用0 代替	16	8.53	2.16	60	60

约延续了1818微秒到达,幅度最大,泥浆波 后的波是高频假端利波,大约延迟2270微秒 到达。套管波幅度很小,已被地层波掩盖分 辨不清,水泥波看不到可以忽略。下面改变 水泥速度、密度,品质因子及地层速度来讨 论对波型影响。

(1)水泥速度对波型影响 图(2)是水泥速度提高到V_P=13.5, V_s

图2 水泥与钢管, 地层都胶结好。水泥Vp=13.5, Vs=8.53 = 8.53得到波型图, 与图(1)比较可以看出

波幅衰减较大, 套管波幅度已看不到可以忽略, 而地层波信息变得更清晰、这是因水泥 刚性增强速度增大有更多的声能进入地层, 使反射到井中声能变小。

从上分析可以看出、水泥参数速度、密 度、衰减系数对波型有影响、特别是速度变 化对波形影响很大。需要指出的是这些参数 对高频假瑞利波有较大影响,这一点被人们 忽略。因此我们可以根据波型幅度变化与水 泥参数建立关系,就可做到定量评价水泥固 井质量。我们还可注意到当地层速度较高时, 能有效提取地层纵、横波信息。这对评价地 层性质是非常有用的。

2,流体一钢管一流体、水泥一地层

我们以这种模型模拟自由套管的情形, 就套管一水泥间流体环形隙厚度变化来考虑 对波型的影响。

图3 自由套管情形

图3钢管与水泥间环形隙厚度为0,0.1, 0.01到完全没有水泥环波型比较,可以看出 随流体层厚度增加,套管波幅度逐渐增大、 地层波变得不清晰,泥浆波后波幅增大、频 率减小,出现次生斯通利波,当厚度为0.1 时,完全相当于自由套管的情形。

由此可以看出流体环形隙存在,对套管 波的幅度有明显影响,因此利用套管波幅度 衰减系数能有效测出钢管与水泥胶结好坏, 这在过去用声幅测井已经解决了的问题。对

声学技术

于低比重水泥,过去的解释图版要进行修改、 参看文献[6]。

3. 流体一钢管一水泥一流体一地层

我们以这种模型模拟部分胶结的情况。 如图4, 水泥与地层间增加了一层流体环形 隙。从图中可以看出随流体厚度增大也具有 图3的性质,但此时流体厚度对地层波影响 更大、当流体厚度为0.01时, 地层波幅度有 明显减小,利用这一点可以识别出流体层存 在。

可以看出无论是套管一水泥间,还是水 泥一地层间存在流体环形隙对波型都有较大 影响,在水泥胶结不好情况下,套管波幅度 较大,当流体环形隙很小时,考察地层波幅 度及出现的次生斯通利波有可能估计出环形 隙幅度。如果参考裸眼井中全波测井效果会 更好。

四、结论及今后工作

我们通过对套管井水泥固井三种理论波 型进行了分析,认为全波测井不仅能评价水 泥固结质量、而且还可以解决第二界面问 题,但是实际问题更复杂,例微裂缝、油水 窜槽、水泥污染等现象存在,并且测量时还 受水泥养护时间影响,因此进行实际模拟实 验是必要的,这也是我们今后要做的工作。 首先要进一步搞清理论模型与模拟实验得到 波型相对照,搞清波形变化与水泥参数及地 层性质关系,借助数字处理技术分析、提取 各种波成分,并与水泥各参数建立关系做到 定量评价,接着得到现场检验不断完善,这 项工作无疑是具有实际意义的。

参考文献

- Tsang, L., Rader, D. 1979, Numerical evaluation of the transient acoustic waveform due to a point source in a fluidfilled borhole, Geophysics, V. 44, p. 1706-1720
- Cheng, C.H., and Toksoz, M.N. 1981, Elastic wave propagation in a fluid-filled borehole and synthetic acoustic logs: Geophysics, V.46, p.1042-1053
- (3) Tubman, K.M., Cheng, C. H., and Toksoz, M.N. 1984, Syn thetic full waveform acoustic logs in cased boreholes: Geophysics V. 49, p.1051-1059
- [4] Baker, L.J., 1984, The effect of the invaded zone on full wavetrain acoustic logging: Geophysics, V.49, p.796-809
- [5] 王冠贵、刘银兵,1984,井内声波全波 列分析,《石油测井科技情报协作组第 三次会议文集》.p61--73
- [6] Masson. J. P. 等, 1987,水泥胶结测井 中泡沫水泥固并质量,《测 并 分析家协 会二十四届年会议文集》张义元等译, p271-276

8卷3期(1989)