NdFeB 磁体表面致密化 Ni 镀层制备 及其耐腐蚀性能

张鹏杰 ^{1,2,3,4}, 刘 晴⁴, 孙 威 ^{1,2,3}, 李炳山 ^{2,3}, 曹玉杰 ^{1,2,3}, 唐大为 ^{1,2,3}, 徐光青 ⁴, 魏汉中 ^{1,2,3}, 谢光环 ^{1,2,3}, 王继全 ^{1,2,3}, 刘 辉 ^{2,3}, 王永齐 ^{2,3}, 李亚峰 ^{2,3}, 王 倩 ^{2,3}

(1. 北矿磁材(阜阳)有限公司,安徽 阜阳 236000)

(2. 国家磁性材料工程技术研究中心, 北京 102600)

(3. 矿冶科技集团有限公司, 北京 102600)

(4. 合肥工业大学 材料科学与工程学院, 安徽 合肥 230009)

摘 要:采用高能球磨法实现烧结 NdFeB 磁体表面 Ni 镀层的致密化,并对致密化后 Ni 镀层进行膜/基结合强度、维氏 硬度测试,通过中性盐雾实验和高温 PCT 实验研究磁体的耐腐蚀性能,采用静态全浸腐蚀实验进一步分析磁体的腐蚀 过程。结果显示,球磨处理工艺可以实现磁体表面 Ni 镀层的致密化,当转速 400 r/min,球磨时间为 24 h 时,Ni-D24/NdFeB 磁体的显微硬度由约 4193.9 MPa 增加至约 4926.2 MPa,结合强度由 16.30 MPa 提升至 23.85 MPa,具有更好的耐机械 损伤性能。镀层的自腐蚀电流密度较 Ni/NdFeB 磁体降低了 1 个数量级,耐中性盐雾腐蚀时间由 312 h 提升至 480 h,具 有更好的耐腐蚀性能。

关键词:烧结 NdFeB; 致密化 Ni 镀层;维氏硬度;耐腐蚀性能 中图法分类号:TG174.441 文献标识码:A 文章编号:1002-185X(2022)08-2863-07

烧结 NdFeB 磁体具有优异的磁性能,然而耐腐蚀性 能较差,从而限制了它们的发展。合金化法和表面处理 法可以增强金属基体的耐腐蚀性能,前者是通过向 NdFeB 基体中添加合金元素来提高磁体自身的耐腐蚀性 能^[1-3],后者是通过在磁体表面涂覆金属或有机涂层,使 基体与腐蚀介质相隔离,从而达到抗腐蚀目的^[4-9]。由于 合金化法需要在磁体中添加合金元素,多数非磁性合金 元素的添加对磁体的磁性能有不利影响,从而在磁体生 产过程中的应用受到限制^[10-12]。目前很多研究通过添加 表面防护镀层来提高磁体的耐腐蚀性,其中金属镀层的 制备受到了越来越广泛的关注。

在烧结 NdFeB 磁体表面制备的金属 Ni 镀层,与基 体有较强的结合力,且耐腐蚀环境的侵蚀效果良好,对 NdFeB 磁体具有一定的保护效果^[13,14]。然而传统的电镀 金属 Ni 镀层,由于 Ni 晶粒的择优生长,导致镀镍层存 在各个部位厚度不均、缺陷多和孔隙率高等缺点,这些 都会成为腐蚀性介质侵入基体的通道,从而使得 NdFeB 基体腐蚀失效。 研究表明可以通过控制 Ni 镀层的生长过程来实现 致密化。张等^[15]采用脉冲电沉积方式在 NdFeB 表面制备 了镍 Ni 层,结果表明较直流电镀镍镀层晶粒更细,脉冲 电沉积使镀层表面 Ni 晶粒的择优取向减弱,从而实现晶 粒的均匀生长,镀层更加致密,耐腐蚀性能更好。董 等^[16]采用机械磨损辅助在 NdFeB 磁体表面镀镍,结果表 明机械磨损可以细化晶粒,使镀层表面更加光滑,明显 减少镀层中的孔隙。本研究采用高能球磨法对磁体表面 金属 Ni 镀层进行球磨处理,提高其表面致密度,使得镀 层更加均匀致密,耐腐蚀性能得到进一步提高。

1 实 验

将电镀法制备的 Ni/NdFeB 磁体先后置于乙醇、去离子水中超声清洗 5 min,干燥后保存待用。然后将 ZrO₂磨球(直径 0.1 mm)和磁体按球料比为 10:1 放入 500 mL 的球磨罐中,调节球磨机的转速为 400 r/min,设置球磨致密化的时间分别为 7,15,24,36 h。完成后取出磁体,清洗干燥。所获得的致密化 Ni 镀层的磁体分别定义

收稿日期: 2021-10-22

基金项目: 安徽省重点研究与发展计划(202004a05020051); 矿冶科技集团科研基金(20190898000002, 02-2115); 合肥市自然科学基金(2021026)

作者简介:张鹏杰,男,1988年生,博士,北矿磁材(阜阳)有限公司,安徽 阜阳 236000,电话:0558-3929260,E-mail: zhangpengjie@bgrimm.com

为 Ni-D7/NdFeB 、Ni-D15/NdFeB 、Ni-D24/NdFeB 和 Ni-D36/NdFeB。

采用 X 射线衍射仪对 Ni/NdFeB 和 Ni-D/NdFeB 磁体 的物相结构进行分析。采用扫描电子显微镜对磁体的形貌 进行观察,同时用配备的能谱仪测量其元素含量。通过 X 射线光电子能谱仪对 Ni/NdFeB 和 Ni-D/NdFeB 磁体表面 Ni 镀层的元素组成以及价态进行表征。

采用万能试验机对致密化前后磁体的膜/基结合力 进行测试^[17]。采用显微硬度计来测试致密化前后 Ni 镀 层的维氏硬度,压痕载荷为 10 g,加载时间为 10 s。采 用电化学工作站对磁体的动电位极化曲线和交流阻抗谱 进行测量,电解质为质量分数 3.5%的 NaCl 溶液,交流 阻抗的数据采用 ZView2 阻抗分析软件进行分析。采用 中性盐雾实验(3.5%NaCl, 35±2 ℃)和高温 PCT 实验 (0.1985 MPa, 100% RH, 120 ℃)来研究磁体的耐腐蚀 性能。采用静态全浸腐蚀实验进一步分析磁体的腐蚀过 程,在 NaCl 溶液中浸渍一定时间后,对表面进行形 貌、成分分析,并在新配置的 NaCl 溶液中进行电化学 极化曲线的测试。

2 结果与讨论

2.1 样品形貌及结构表征

图1所示为Ni/NdFeB和Ni-D24/NdFeB磁体的SEM 照片及EDS能谱分析。从图1a中可以看出,Ni/NdFeB 磁体表面呈胞块状结构,晶粒尺寸较大且十分不均匀,高 倍下可明显观察到晶粒间隙甚至细小的裂纹存在。这是电 镀过程中Ni在(111)方向的择优生长所造成的,因此 镀层的表面凹凸不平,致密化程度不高。图1b中的EDS 能谱显示 Ni 的含量为 98.5%,表明了 Ni 镀层具有较好的稳定性。经 24 h 球磨处理后(图 1d), Ni 镀层凹凸不平的晶粒在高能磨粒的撞击作用下而趋于平整致密,晶粒间隙减小甚至消失,可以观察到明显的致密化效果。EDS 能谱显示镀层的表面成分未发生变化。

从图 1c 截面图中可以看出,未经球磨处理的 Ni 镀 层的厚度约为 13 µm,镀层的表面不平整,存在着较大 的起伏。球磨处理后,镀层(图 1f)的厚度并未发生变 化,但可以观察到镀层的厚度变得更加均匀,表面较 Ni/NdFeB 磁体明显变得光滑平整,进一步证明了球磨处 理所带来的致密化效果。

图 2 为 Ni/NdFeB 与球磨不同时间 Ni-D/NdFeB 磁体 的 XRD 物相分析。从图中可以观察到 Ni/NdFeB 磁体表 面存在着 3 个典型的衍射峰,分别位于 44.5 ° 51.8 °和 76.4 ° 处,对应于 Ni 的 (111)、(200)和(220)3 个晶面 (PDF#04-0850)^[17]。经不同时间球磨处理后, Ni 镀层表 面并未发现新的衍射峰的存在,表明 Ni 镀层具有较高的 稳定性,在致密化过程中并没有新的物相结构的生成。

采用 XPS 光电子能谱对 Ni/NdFeB 与 Ni-D24/NdFeB 磁体表面元素价态组成进行分析。从图 3a 总谱中可以看出, Ni 镀层的表面元素组成主要为 Ni、C和O,其中C 元素来自于测试设备本身。

对图 3b 中 Ni 2p 高分辨图谱分析发现, Ni/NdFeB 磁体表面在 852.40 和 870.18 eV 处的 2 个特征峰对应于 金属镍, 855.08 eV 处为 Ni²⁺(O)的特征峰,这是由于 Ni 镀层暴露在空气中生成了部分氧化物,因此在镀层表面 同时存在着 Ni 和 NiO^[18,19]。

经24h 球磨处理后, Ni-D24/NdFeB 磁体表面 856.28

图 1 Ni/NdFeB 磁体和 Ni-D24/NdFeB 磁体的 SEM 照片及 EDS 能谱分析

Fig.1 SEM images and EDS analysis of Ni/NdFeB (a~c) and Ni-D24/NdFeB (d~f) magnets

图 2 Ni/NdFeB 和球磨不同时间 Ni-D/NdFeB 磁体的 XRD 图谱

Fig.2 XRD patterns of Ni/NdFeB and Ni-D/NdFeB magnets obtained with different ball-milling time

- 图 3 Ni/NdFeB 和 Ni-D24/NdFeB 磁体的 XPS 图谱全谱及 Ni 2p 高分辨图谱
- Fig.3 XPS spectra of Ni/NdFeB and Ni-D24/NdFeB magnets: (a) survey spectra and (b) high resolution spectra of Ni 2p

和 874.08 eV 处的峰都对应于 Ni-O 组,861.98 eV 处的 峰为卫星峰^[20,21]。对镀层表面 Ni 和 O 的相对含量进行 分析,结果表明,致密化处理后,Ni 镀层的相对含量由 46.07% 降低至 31.99%,O 的含量由 53.93% 增加至 68.01%。研究表明,在整个球磨过程中,高能磨粒的反 复撞击导致了镀层的致密化和温度的迅速升高,原本粗 大且凹凸不平的 Ni 晶粒趋于平整致密,同时 Ni 的表面 也发生了进一步的氧化,生成更为稳定的氧化物。

2.2 力学性能分析

图 4 为 Ni/NdFeB 与 Ni-D24/NdFeB 磁体的载荷-位 移曲线,当 Ni 涂层从 NdFeB 衬底上剥离后,载荷发生 急剧的下降,左下角为 Ni 涂层剥落后的照片。由图中数 据可以得出,Ni/NdFeB 磁体的膜/基结合强度为 16.30 MPa,经 24 h 球磨处理后,Ni-D24/NdFeB 磁体的 结合强度增加至 23.85 MPa。表明球磨处理提高了镀层 的致密度,从而使得镀层与基体的结合强度增加,镀层 的力学性能得到提高,为磁体提供更加长效的保护作用。

表1列出了 Ni/NdFeB 和球磨不同时间 Ni-D/NdFeB 磁体表面金属 Ni 镀层的显微硬度测试结果。如表中所示,Ni/NdFeB 磁体的维氏硬度 HV 约为 4193.9 MPa,经 球磨处理后,所有镀层的显微硬度硬度均有了明显的提高,且随着球磨时间的增加先增加后降低。其中 Ni-D24/NdFeB 磁体的硬度 HV 值最大约为 4926.2 MPa,进一步延长球磨时间,镀层表面出现损伤脱落现象,镀层的硬度有所降低。镀层硬度的增加归因于球磨过程中的致密化效果,表明球磨处理有利于镀层力学性能的提高,增强其耐腐蚀性,为烧结 NdFeB 磁体提供更好的防护作用。

2.3 耐腐蚀性能分析

图 5 显示了 Ni/NdFeB 与球磨不同时间 Ni-D/NdFeB

Fig.4 Typical tensile load-displacement curves of Ni/NdFeB and Ni-D24/NdFeB magnets

表 1 Ni/NdFeB 和球磨不同时间 Ni-D/NdFeB 磁体的显微硬度

Table 1 Microhardness of Ni/NdFeB and Ni-D/NdFeB magnets with different ball-milling time

Samples	Microhardness, HV/×9.8 MPa
Ni/NdFeB	427.95
Ni-D7/NdFeB	461.26
Ni-D15/NdFeB	459.51
Ni-D24/NdFeB	502.67
Ni-D36/NdFeB	498.40

- 图 5 Ni/NdFeB 和球磨不同时间 Ni-D/NdFeB 磁体的动电位极化 曲线
- Fig.5 Potentiodynamic polarization curves of Ni/NdFeB and Ni-D/NdFeB magnets with different ball-milling time

磁体在 3.5%NaCl 溶液中测得的动电位极化曲线,相应 的拟合结果示于表 2 中。从图 5 中可以看出,Ni/NdFeB 磁体的自腐蚀电位为--0.80 V,经球磨处理后,磁体的自 腐蚀电位均发生了不同程度的正移,其中 Ni-D24/NdFeB 磁体的电位变化最明显,由--0.80 V 正移至了--0.56 V。

从表 2 的自腐蚀电流密度来看, Ni/NdFeB 磁体的自腐蚀电流密度为 2.67×10⁻⁵ A/cm²,在球磨时间分别为 7 和 15 h 条件下制备的磁体自腐蚀电流密度与 Ni/NdFeB 磁体保持在同 1 个数量级,而 Ni-D24/NdFeB 磁体的自腐蚀电流密度降低至 2.79×10⁻⁶ A/cm²,表现出最小的腐蚀倾向和最佳的耐腐蚀性。进一步增加球磨时间至 36 h,样品的自腐蚀电流密度与 Ni/NdFeB 磁体保持一致,这可能是由于长时间的球磨对镀层表面造成的损伤 脱落导致的。

图 6 所示为 Ni/NdFeB 与球磨不同时间 Ni-D/NdFeB 磁体在 3.5%NaCl 溶液中的交流阻抗谱, 拟合等效电路 如图中右下角插图所示, 相应的拟合结果如表 3 所示。

从表 3 中可以看出, 溶液电阻 R_s基本稳定在

表 2 Ni/NdFeB 和球磨不同时间 Ni-D/NdFeB 磁体动电位极化曲 线的拟合结果

 Table 2
 Matching results of potentiodynamic polarization curves of Ni/NdFeB and Ni-D/NdFeB magnets with

different ball-milling time		
Samples	$E_{\rm corr}/{ m V}$	$J_{\rm corr}$ /A cm ⁻²
Ni/NdFeB	-0.80	2.67×10 ⁻⁵
Ni-D7/NdFeB	-0.73	1.15×10 ⁻⁵
Ni-D15/NdFeB	-0.67	2.63×10 ⁻⁵
Ni-D24/NdFeB	-0.56	2.79×10 ⁻⁶
Ni-D36/NdFeB	-0.60	2.29×10 ⁻⁵

- 图 6 Ni/NdFeB 和球磨不同时间 Ni-D/NdFeB 磁体的交流阻抗谱
- Fig.6 Nyquist plots of Ni/NdFeB and Ni-D/NdFeB magnets obtained with different ball-milling time

表 3 Ni/NdFeB 和球磨不同时间 Ni-D/NdFeB 磁体阻抗谱的拟合 结果

 Table 3
 Fitting results of Nyquist plots of Ni/NdFeB and

 Ni-D/NdFeB magnets with different ball-milling time

Samples	$R_{\rm s}/\Omega \cdot {\rm cm}^2$	$R_{\rm ct}/\Omega \cdot {\rm cm}^2$	Chi-Square
Ni/NdFeB	3.697	768	3.06×10 ⁻³
Ni-D7/NdFeB	3.865	2199	1.41×10^{-3}
Ni-D15/NdFeB	4.172	6034	4.91×10^{-4}
Ni-D24/NdFeB	4.418	37750	3.08×10 ⁻³
Ni-D36/NdFeB	4.057	24070	2.57×10 ⁻²

3.6~4.4 Ω·cm²之间,未发生较大的波动,表明磁体测试 时的溶液条件较为稳定。从图中可以看出,未经球磨的 Ni/NdFeB 磁体的电荷转移电阻为 768 Ω·cm²,经不同时 间球磨处理后,所有磁体的电容电弧半径均较 Ni/NdFeB 磁体有所增加,其中,Ni-D24/NdFeB 磁体的电荷转移电 阻达到 37750 Ω·cm²,表现出最佳的耐腐蚀性能。表明 球磨处理在一定程度上提高了镀层的耐腐蚀性能。

图 7 为 Ni/NdFeB 与 Ni-D/NdFeB 磁体经不同时间盐 雾实验后的光学形貌照片。从图 7a 中可以看出,经 72 h 实验后,Ni/NdFeB 磁体表面布满了白斑,312 h 后表面 出现红色腐蚀产物,表明镀层已经破坏,NdFeB 基体发 生了腐蚀。经球磨处理后,磁体表面出现红斑的时间进 一步延长,表明球磨处理使得镀层的耐腐蚀性能得到提 高。其中 Ni-D7/NdFeB 和 Ni-D15/NdFeB 磁体出现红斑的 时间相近,而 Ni-D24/NdFeB 磁体表现出最佳的耐盐雾腐 蚀性能,120 h 盐雾暴露后表面出现白斑,480 h 实验后 表面出现肉眼可见的红斑。进一步增加球磨时间至 36 h, 镀层的耐腐蚀性能又有所下降,经 96 h 盐雾腐蚀后磁体 表面出现白 斑,432 h 后磁体发生腐蚀。

图 8 所示为采用高度加速老化试验箱进行磁体的

图 7 Ni/NdFeB, Ni-D7/NdFeB, Ni-D15/NdFeB, Ni-D24/NdFeB 和 Ni-D36/NdFeB 不同磁体经不同盐雾时间的表面光学照片 Fig.7 OM images of magnets after salt spray for different time: (a) Ni/NdFeB, (b) Ni-D7/NdFeB, (c) Ni-D15/NdFeB, (d) Ni-D24/NdFeB, and (e) Ni-D36/NdFeB

图 8 Ni/NdFeB 和 Ni-D24/NdFeB 磁体的腐蚀增重曲线 Fig.8 Mass gain curves of Ni/NdFeB and Ni-D24/NdFeB magnets

腐蚀增重实验,定量比较致密化前后磁体的耐腐蚀性能。 对 Ni-D24/NdFeB 磁体来说,在前 96 h 的实验过程中磁 体表面 Ni 镀层发生氧化,生成较为稳定的氧化产物,导 致 磁 体 的 质 量 增 加 ,此时 ,磁体 的 腐 蚀 增 重 为 0.19 mg/cm²。此后表面氧化物的附着在一定程度上阻隔 了外界与磁体的接触,因此,在 96~240 h 的过程中,磁 体未发生进一步的氧化。进一步延长时间至 240 h 后,腐 蚀性介质渗透导致 Ni 镀层再度发生氧化腐蚀,导致磁体 的质量进一步增加,当时间为 336 h 时,磁体的腐蚀增 重为 0.38 mg/cm²。从图中可以发现,在整个实验过程 中, Ni-D24/NdFeB 磁体的腐蚀增重始终小于 Ni/NdFeB 磁体,表明 Ni-D24/NdFeB 磁体的腐蚀速率小于 Ni/NdFeB 磁体。实验结果表明球磨处理提高了镀层的致 密性,增强了 Ni 镀层的耐腐蚀性,从而为 NdFeB 磁体 提供更好的防护作用。

2.4 腐蚀过程分析

采用静态全浸腐蚀实验来研究 Ni-D24/NdFeB 磁体的腐蚀过程。图 9 和图 10 分别为为磁体在 3.5%NaCl 溶液中浸泡不同时间对应的极化曲线、表面光学照片及 SEM 照片,经 672 h 浸泡后,Ni 镀层表面出现黄斑,之 后随着浸泡时间的增加,黄斑逐渐扩大。720 h 后镀层表

图 9 Ni-D24/NdFeB 磁体在 NaCl 溶液中浸泡不同时间的动电位 极化曲线及表面光学照片

Fig.9 Potentiodynamic polarization curves and OM images of Ni-D24/NdFeB with different immersion time

 $\frac{at\%}{Ni \ 91.6} a$ $\frac{at\%}{O \ 8.4} b$ $\frac{4 \ \mu m}{Ni \ 50.1} O \ 44.5$ $Fe \ 4.2$ $Nd \ 1.2$ $\frac{4 \ \mu m}{V}$ $\frac{4 \ \mu m}{V}$ $\frac{4 \ \mu m}{V}$ $\frac{4 \ \mu m}{V}$

图 10 Ni-D24/NdFeB 磁体在 NaCl 溶液中浸泡不同时间的 SEM 照片及 EDS 分析结果

Fig.10 SEM images and EDS results of Ni-D24/NdFeB magnets after immersion in NaCl solution for different time: 0 h (a), 672 h (b), 720 h (c) and 768 h (d)

面开始出现红斑,当浸泡时间达到 768 h 时,镀层表面 可观察到明显的红色腐蚀产物,表明 Ni 镀层的防护失 效,NdFeB 基体发生了腐蚀。

表 4 为极化曲线的拟合结果,在前 240 h 浸泡时间 内,镀层的自腐蚀电流密度变化缓慢,表明 Ni 镀层依然 保持着较好的完整性,对磁体起到防护效果。随后 Ni 镀层表面的薄弱地区开始被腐蚀,当镀层表面出现黄斑 时(672 h),镀层的腐蚀电位降低至--0.68 V,自腐蚀电 流密度也增加至 1.13×10⁵ A/cm²。进一步延长浸泡时间至 720 和 768 h,由于 NaCl 溶液对 NdFeB 基体的腐蚀,磁 体的腐蚀电流密度迅速增加至 8.34×10⁻⁵ A/cm²,自腐蚀 电位也降低至--0.78 V。

图 10 为 Ni-D24/NdFeB 磁体在 3.5%NaCl 溶液中分 别浸泡 0、672、720 和 768 h 的 SEM 照片和对应的 EDS 能谱结果。当浸泡时间为 672 h 时,镀层表面开始出现 裂纹。随后裂纹逐渐向外扩展延长,720 h 浸泡 后,镀 层表面已被大量的裂纹所覆盖,同时出现了少量的腐蚀

表 4	Ni-D24/NdFeB	磁体动电位极化曲线的拟合结果

 Table 4
 Fitting results of potentiodynamic polarization curves of

 Ni: D24/NdEoR mognets

INI-D24/INUFED magnets		
Immersion time/h	$E_{\rm corr}/{ m V}$	$J_{\rm corr}$ /A cm ⁻²
0	-0.56	2.76×10 ⁻⁶
240	-0.64	7.13×10 ⁻⁶
672	-0.68	1.13×10 ⁻⁵
720	-0.75	3.23×10 ⁻⁵
768	-0.78	8.34×10 ⁻⁵

产物。随着浸泡时间增加至 768 h, NaCl 溶液已沿着裂 纹产生的通道到达 NdFeB 基体, 对基体进行腐蚀, 产生 大量的红色腐蚀产物。EDS 能谱分析显示, 在整个浸泡 过程中 Ni 镀层由于腐蚀溶解, 含量逐渐从 91.6%降低至 9.0%。Fe 和 Nd 的含量随着浸泡时间的延长而分别增加 至 4.2%、13.1%和 70.4%, 1.2%、3.5%和 6.1%。Fe 和 Nd 含量的增加归因于 Ni 镀层的腐蚀失效从而导致了 NdFeB 基体发生腐蚀。

3 结 论

 1) 球磨处理成功实现了 Ni 镀层的致密化。SEM 形 貌观察发现, Ni 镀层粗大且不均匀的晶粒经球磨处理后 得到细化,晶粒间隙减小甚至消失,镀层的厚度变得更 加均匀。在球磨过程中, Ni 镀层发生了部分氧化,生成 了更为稳定的氧化物。

2) 致密化 Ni 镀层的机械性能和耐腐蚀性能均有所 提高,当转速为 400 r/min, 球磨时间为 24 h 时,磁体获 得最佳的性能。在此条件下, Ni-D24/NdFeB 磁体的显微 硬度由 4193.9 MPa 增加至约 4926.2 MPa,结合强度由 16.30 MPa 提升至 23.85 MPa,具有更好的耐机械损伤性 能。此外,镀层的自腐蚀电流密度较 Ni/NdFeB 磁体降 低了 1 个数量级,耐中性盐雾时间由 312 h 提升至 480 h, 具有更好的耐腐蚀性能。

3) 球磨过程中高能磨球的反复撞击,使得镀层表面的晶粒细化平整,晶粒间隙消失,镀层表面具有更高的致密度。球磨处理也使得镀层与 NdFeB 基体间存在着更

高的结合强度,因此镀层对于外界腐蚀性介质具有更好 的阻隔作用,耐腐蚀性能得到优化。

参考文献 References

- [1] Fidler J, Schrefl T. Journal of Applied Physics[J], 1996, 79(8): 5029
- [2] Yan Aru, Song Xiaoping, Chen Zhongmin et al. Journal of Magnetism and Magnetic Materials[J], 1998, 185(3): 369
- [3] Cui X G, Yan M, Ma T Y et al. Physica B-Condensed Matter[J], 2008, 403(23-24): 4182
- [4] Rampin I, Bisaglia F, Dabala M. Journal of Materials Engineering and Performance[J], 2010, 19(7): 970
- [5] Cheng C W, Cheng F T, Man H C. Journal of Applied Physics[J], 1998, 83(11): 6417
- [6] Hu Shegnqing, Peng Kun, Chen E et al. Journal of Materials Engineering and Performance[J], 2015, 24(12): 4985
- [7] Gurappa I, Pandian S. Corrosion Engineering Science and Technoligy[J], 2006, 41(1): 57
- [8] Ma C B, Cao F H, Zhang Z et al. Applied Surface Science[J], 2006, 253(4): 2251
- [9] Mao Shoudong, Yang Hengxiu, Feng Huang et al. Applied Surface Science[J], 2011, 257(9): 3980
- [10] Li Hongying(李红英), Hao Zhuangzhi(郝壮志), Liu Yuhui(刘宇 晖). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2018, 47(5): 1451

- [11] Ni Junjie(倪俊杰), Wang Yongkang(王永康), Jia Zhengfeng(贾 正锋). Rare Metal Materials and Engineering(稀有金属材料与 工程)[J], 2016, 45(8): 2111
- [12] Tian Yilan(田忆兰), Yang Yini(杨旖旎), Tang Chunmei(唐春梅). Materials Protection(材料保护)[J], 2017, 50(4):1
- [13] Li Jian(李 建), Zhou Yi(周 义), Cheng Xinghua(程星华).
 Journal of Rare Earths(稀土)[J], 2011, 32(3): 19
- [14] Blackwood D J, Balakrisnan B, Huang Y Z. Journal of Magnetism and Magnetic Materials[J], 2001, 223: 103
- [15] Zhang Yan(张 艳), Zhang Yuan(张 媛), Li Qian(李 倩). Materials Protection (材料保护)[J], 2015, 48(4): 19
- [16] Dong Xueliang(董雪亮), Wang Deren(王德仁), Zeng Yangqing (曾阳庆). Journal of Rare Earths(稀土)[J], 2014, 32(9): 867
- [17] Zhang Pengjie, Xu Guangqing, Liu Jiaqin et al. Applied Surface Science[J], 2016, 363: 499
- [18] Yan Xiaodong, Tian Lihong, Chen Xiaobo. Journal of Power Sources[J], 2015, 300(12): 336
- [19] Zhang Bowei, Lui Yuhui, Ni Hongwei et al. Nano Energy[J], 2017, 38(2): 553
- [20] Luo Shijian, Li Xiaoman, Gao Wanguo et al. Sustainable Energy & Fuels[J], 2020, 4(1): 164
- [21] Wang Dewen, Li Qun, Han Ce et al. Nature Communications[J], 2019, 10(1): 3899

Preparation and Corrosion Behavior of Sintered NdFeB Magnets Coated with Densified-Ni Coatings

Zhang Pengjie^{1,2,3,4}, Liu Qing⁴, Sun Wei^{1,2,3}, Li Bingshan^{2,3}, Cao Yujie^{1,2,3}, Tang Dawei^{1,2,3}, Xu Guangqing⁴, Wei Hanzhong^{1,2,3}, Xie Guanghuan^{1,2,3}, Wang Jiquan^{1,2,3}, Liu Hui^{2,3}, Wang Yongqi^{2,3}, Li Yafeng^{2,3}, Wang Qian^{2,3}

(1. BGRIMM Magnetic Materials and Technology (Fuyang) Co., Ltd, Fuyang 236000, China)

(2. National Engineering Research Center for Magnetic Materials, Beijing 102600, China)

(3. General Research Institute of Mining and Metallurgy, Beijing 102600, China)

(4. School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China)

Abstract: The densified-Ni coating on sintered NdFeB magnets was prepared by high-energy ball milling method. The film/substrate bonding strength and Vickers hardness of densified-Ni coating were tested. The corrosion resistance of the specimens was studied by neutral salt spray test and high temperature PCT test. The corrosion process of the magnets was further analyzed by static full immersion test. The results show that the Ni coating on the magnet surface could be densified by ball milling process. The microhardness of Ni-D24/NdFeB magnet increases from 4193.9 MPa to 4926.2 MPa and the binding strength increases from 16.30 MPa to 23.85 MPa after 400 r/min and 24 h ball milling, which indicates better mechanical damage resistance. The self-corrosion current density of the coating reduces by one order of magnitude compared with that of Ni/NdFeB magnet, and the resistance time to neutral salt spray increases from 312 h to 480 h, showing better corrosion resistance. **Key words:** sintered NdFeB; densified-Ni coatings; Vickers hardness; corrosion behavior

Corresponding author: Xu Guangqing, Professor, Hefei University of Technology, Hefei 230009, P. R. China, Tel: 0086-551-62901372, E-mail: gqxu1979@hfut.edu.cn