文章编号:1006-9941(2014)01-0062-04

B 炸药在弹丸侵彻作用下的易损性

 /// ,用 海',倪 冰¹,杨建刚¹,贾宪振¹,郑亚峰¹
 (1. 西安近代化学研究所,陕西 西安 710065; 2. 西安交通大学材料学院,陕西 西安 710049)
 摘 要:为探索不同温度下 B 炸药易损性的响应特性,评价 穿 未 20 m · s⁻¹速度得和 7 p · · · · 摘 要:为探索不同温度下 B 炸药易损性的响应特性,评价穿透深度和环境温度对 B 炸药响应程度的影响,用 12.7 mm 穿甲燃烧 弹以 850 m·s⁻¹速度侵彻了 B 炸药。研究了-40, 25, 70 ℃温度下 B 炸药的响应特性。用非线性有限元软件 ANSYS/LS-DYNA 模拟了弹丸侵彻过程,研究了 B 炸药力学性能对易损性的影响。结果表明:在 25 ℃条件下,B 炸药极限侵彻深度为 200 ~ 250 mm。B 炸药在-40, 25, 70 ℃条件下最高反应级别分别为爆燃、爆炸、爆燃反应。高温、低温环境抑制了 B 炸药对弹丸侵彻的 反应程度。装药剪切模量下降可使B炸药响应程度降低。

关键词:爆炸力学;B炸药;易损性;侵彻作用;极限侵彻深度 中图分类号: TJ55; O389 文献标志码:A

DOI: 10.3969/j.issn.1006-9941.2014.01.013

1 引 言

易损性是指炸药在不同刺激下的响应历程和反应 剧烈性。为了评判弹药易损性,世界各国建立了不同 的模拟试验装置和方法^[1-4],其中采用 12.7 mm 穿甲 燃烧弹侵彻试验方法测试弹药在弹丸高速侵彻条件下 的响应状况,评价弹药的易损性是应用最为广泛的方 法之一。然而,由于使用环境不同,炸药在弹丸刺激下 的响应程度可能会受到环境温度的影响。为此,有学 者建立了热和机械复合刺激下的炸药响应特性试验方 法^[5],研究了170 ℃及以上温度对炸药抗弹丸刺激的影 响,结果表明,温度变化对部分炸药侵彻安全性有显著 影响。但是,上述研究中的试验温度远高于环境温度。

B 炸药目前仍是国内外广泛使用的一种高能炸药, 研究其在弹丸侵彻作用下的易损性具有重要的工程实用 价值。鉴于目前关于高低温环境下弹丸侵彻易损性研究 较少,且没有文献讨论 B 炸药在弹丸侵彻过程中的尺度效 应和温度效应,本研究在该方面开展了有针对性的工作。

- 2 试
- 2.1 样

品

弹丸采用制式 12.7 mm 穿甲燃烧弹。B 炸药由 西安近代化学研究所制备,密度1.67g·cm⁻³,药柱

收稿日期: 2012-08-20; 修回日期: 2013-03-28 作者简介:席鹏(1985-),男,工程师,从事炸药配方及工艺研究。 e-mail: xipeng-57@163.com

直径100 mm,药柱长度分别为50,100,150,200, 250, 300, 600 mm。装药壳体为 45[#]钢,厚度 4 mm。 将样品在恒温箱中恒温4h后,在保温条件下进行侵 彻试验。恒温温度分别为-40, 25, 70 ℃,恒温箱为 A-GDW-800 安全型高低温箱。

2.2 弹丸侵彻试验

弹丸侵彻方向和试验装置如图 1 所示。采用 12.7 mm机枪轴向射击带壳体的 B 炸药,弹丸侵彻速度 (850 ±20) m · s⁻¹。样品经恒温处理后,用保温层包 覆,样品侧面和底面放置见证板。保温层采用医用脱脂 棉,厚度1 cm,见证板45[#]钢,厚度4 mm,由底见证板和 侧见证板组成,宽度 200 mm,长度与壳体长度相同。 弹丸高速侵彻待测样品后,观测试样响应状态。试验结 果判定参考美军标 2105C^[1]。

Fig. 1 Test diagram for bullet penetration

2.3 邵氏硬度实验

实验温度为-40~95 ℃; 将 B 炸药置于 A-GDW-800 安全型高低温箱恒温4h,采用LX-A型邵氏硬度仪 测试不同温度下的 B 炸药邵氏硬度,每组测试三个试验 点,取平均值。

2.4 数值仿真

采用 ANSYS/LS-DYNA 程序对弹丸侵彻过程进行 了数值仿真。模拟 B 炸药的体积模量为 26 GPa,动态 屈服强度为 200 MPa, 剪切模量为 3.5 GPa。图 2 为计 算模型图,图中装药尺寸为 ϕ 100 mm×400 mm。

图2 计算模型

Fig. 2 Calculation model of bullet impact test

结果与分析 3

3.1 尺度效应分析

在 25 ℃条件下,弹丸分别侵彻不同长度的 B 炸药 药柱,试验结果见表1。从表1可以看出,侵彻深度从 50~600 mm 增长过程中,炸药壳体破裂程度增大,炸药 先后发生燃烧、爆燃直至爆炸反应。在侵彻深度50 mm

表1 B 炸药侵彻试验结果

Table 1 Results of Comp. B obtained by the penetration t	est
--	-----

条件下,炸药发生燃烧反应,并残留大量炸药,主壳体 和见证板完好,反应等级为燃烧反应;当侵彻深度在 50~250 mm 时,炸药反应剧烈性增强; 当炸药侵彻 深度高于 250 mm 后,见证板严重变形,发生爆炸反 应;侵彻深度继续增加,炸药反应级别无变化。由于 B 炸药属于热塑性材料,在弹丸侵彻过程中,B 炸药中 的 TNT 吸收弹丸的机械能,发生相态转化(侵彻深度 小于 50 mm); 随后含能材料发生点火,引起炸药发生 剧烈响应(侵彻深度大于200 mm)。根据试验结果,定 义炸药发生最高反应等级的最小轴向尺度为炸药极限 侵彻深度 δ_{max} 。当炸药侵彻深度(δ)小于 δ_{max} 时,随着 炸药侵彻深度的增大,炸药反应剧烈性明显增强。当炸 药达到极限侵彻深度后($\delta \ge \delta_{max}$ 时),炸药保持最高反 应级别;当δ<δ_{max}时达不到最高反应级别。在 25 ℃条 件下,B炸药极限侵彻深度在200~250 mm之间。

3.2 试验温度对 B 炸药响应特性的影响

将不同侵彻深度 B 炸药分别置于-40, 25, 70 ℃ 条件下,进行弹丸侵彻试验,结果见表 2。图 3 是 Φ 100 mm x 300 mm B 炸药试验前后照片。

penetration depth /mm	energetic materials	explosive case	witness plate	reaction types
50	combusting, lots of unreacted explosive	separation of ends	intact	burning
100	combusting, partial unreacted explosive	rupture but dose not fragment	intact	deflagration
150	combusting, partial unreacted explosive	rupture but dose not fragment	intact	deflagration
200	combusting, partial unreacted explosive	breaks & expulsion of ends	intact	deflagration
250	explosion, no unreacted explosive	violent breaking into large fragment	gross distortion	explosion
300	explosion, no unreacted explosive	violent breaking into large fragment	gross distortion	explosion
600	explosion, no unreacted explosive	violent breaking into large fragment	gross distortion	explosion

表2 不同温度下 B 炸药侵彻试验结果

Table 2 Results of Comp. B obtained by the penetration test at different temperatures

7/℃		δ/mm			
	50	100	300	600	Umax / Hilli
-40	burning	deflagration	deflagration	deflagration	50 ~100
25	burning	deflagration	explosion	explosion	200 ~250
70	burning	deflagration	deflagration	deflagration	50 ~100

a. before experiment **b.** after −40 °C penetration test c. after 25 ℃ penetration test

d. after 70 °C penetration test

图 3 不同温度下 B 炸药装药实验结果

Fig. 3 Experimental results of Comp. B charges at different temperatures

对表 2 进行分析, 侵彻深度在 50~100 mm 时, 低温下 B 炸药反应剧烈性与常温 B 炸药相当;当炸药 达到极限侵彻深度后,低温态反应级别低于常温态。 从图 3b 和图 3c 也可以看出, Φ 100 mm x 300 mm 的 B炸药在低温下反应剧烈性低于常温状态。弹丸侵彻 试验用于评价炸药对机械刺激的响应能力,目前普遍 接受且被试验证实的起爆机理是热点点火的二阶段理 论^[6-7]。根据该理论,B 炸药在弹丸侵彻后,必须经历 热点生成和热点增长二个阶段。有研究表明^[8],装药 破坏和热点生成是非等温剪切下塑性变形的结果,在 机械冲击下,热点生成能力与其脆性破坏程度有关。 在熔点温度之下,随着炸药温度的降低,其破坏强度升 高,炸药发生塑性变形的随机性下降,减小了发生点火 的可能性和热点浓度。在热点生成后,热点增长的必 要条件是热点处炸药热分解的放热速率和放热量大于 热点与临近炸药发生热交换的吸热速率和吸热量。热 点增长与汇聚所需要的能量等于化学反应释放的能量 与炸药吸热量的差值。在放热量相同的情况下,炸药 初始温度越低,热点与周围的热交换量越大,系统所贡 献给热点增长与汇聚的能量越小,抑制了装药反应的 剧烈性。

在高温试验过程中,B 炸药温度接近其熔化温度, B 炸药在不同温度下的邵氏硬度如图 4 所示。与 25 ℃时的邵氏硬度(98HA)相比,70 ℃时 B 炸药邵 氏硬度约下降 70%。B 炸药是热塑性炸药,随着温度 升高,炸药邵氏硬度逐渐降低,力学性能发生变化。高 温下 B 炸药响应程度受到热效应、机械刺激以及炸药 力学性能的共同影响。从图 3d 也可以看出,70 ℃、侵 彻深度 300 mm 条件下,B 炸药两端端盖冲开,主壳体 完好,炸药发生爆燃反应,响应等级和响应剧烈性均低 于 25 ℃试验结果(图 3c)。

3.3 力学性能对 B 炸药反应特性影响

采用仿真方法模拟不同力学性能炸药受到弹丸侵

图 4 不同温度下 B 炸药邵氏硬度的变化 Fig. 4 The shore hardness vs. temperature

彻后的反应情况。其中硬药柱材料参数用常温 B 炸药的粘弹性材料参数代替,软药柱剪切模量设为硬药柱的二分之一,其它参数不变。通过对比两种条件下药柱的动态响应规律,来判断材料力学性能对抗侵彻性能的影响。图 5 是力学性能不同的两种 B 炸药受到弹丸侵彻后的压力云图。

a. high modulus

图 5 力学性能不同的两种 B 炸药受到弹丸侵彻后的压力云图 Fig. 5 The pressure contours of Comp. B explosive with different shear modulus after bullet penetration

由图5可以看出,在弹丸侵彻过程中,剪切模量低 的药柱应力峰值(0.8 GPa)低于剪切模量高的药柱 (1.2 GPa)。低剪切模量药柱的应力分布存在明显的 均匀化现象,局部的应力集中效应很快消失,而剪切模 量高的药柱的应力集中则持续较长的时间。炸药剪切 模量对侵彻响应的影响依然可以用热点起爆机理解 释^[9-10]。在弹丸侵彻炸药过程中,侵彻作用引起炸药 晶体破碎,在晶体内或者晶体间形成相当高的应力,而 这种应力会使炸药形成热点,进一步发展为剧烈反应。 但是,一般情况下,侵彻作用时间有限,外力消失后,如 果晶体间还未来得及形成高应力,炸药不会发生剧烈 的化学反应[11]。对于软药柱,受到弹丸侵彻时,容易 发生塑性形变,缓和了外界的侵彻作用,不利于热点的 形成和发展,所以表现出温和的反应特性。相反,硬药 柱受到侵彻发生形变时,破碎与挤压的程度较强,各组 分间的摩擦作用较大,使得局部温度升高,更容易形成 热点,也就增加了其反应剧烈性。因此,随着炸药剪切 模量降低,炸药峰值压力降低,高压区减小,炸药反应 的剧烈性下降,炸药抗弹丸侵彻能力明显增强。

4 结 论

(1) 在 12.7 mm 穿甲燃烧弹侵彻作用下,当炸药 轴向尺寸(δ)小于极限侵彻深度 δ_{max} 时,随着炸药侵彻 深度的增大,炸药反应剧烈性明显增强。当炸药达到 极限侵彻深度后($\delta \ge \delta_{max}$ 时),炸药保持最高反应级别。 在 25 ℃条件下,B 炸药极限穿深为 200~250 mm。

(2) B 炸药在-40 ℃和 70 ℃条件下最高反应级 别为爆燃反应,低于 25 ℃时的爆炸反应级别,高温和 低温对 B 炸药响应剧烈性有抑制作用。随着温度升 高,B 炸药力学性能发生变化,70 ℃条件下,B 炸药邵 氏硬度低于常温条件。

(3) B 炸药剪切模量降低后,炸药峰值压力随着 降低,高压区减小,炸药抗弹丸侵彻能力明显增强。

参考文献:

- [1] MIL-STD-2105C. Hazard assessment tests for non-nuclear munition[S]. 2003.
- [2] James H R, Cook M D, Haskins P J. The response of homogeneous explosives to projectile attack[C] //11th International Detonation Symposium. Norfolk: Office of Naval Research, 1998: 581-587.
- [3] William Lawrence, John Starkenberg, Brian Krzewinski. Secondary effects on projectile-impact shock initiation [C] // 13th International Detonation Symposium. Norfolk: Office of naval research, 2006: 822–829.
- [4]代晓淦,申春迎,吕子健,等. 枪击试验中不同尺寸 PBX-2 炸药

Vulnerability of Composition B by Bullet Penetration

响应规律研究[J]. 含能材料, 2008, 16(4): 432-435. DAI Xiao-gan, SHEN Chun-ying, Lü Zi-jian, et al. Reaction properties for different size PBX-2 explosives in bullet impact test [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2008, 16(4): 432-435.

- [5] 代晓淦,文玉史,申春迎,等. 热和枪击复合环境试验中 PBX-2 炸药的响应特性[J]. 火炸药学报,2009(4);41-44.
 DAI Xiao-gan, WEN Yu-shi, SHEN Chun-ying, et al. Reaction characteristics of PBX-2 under heat and bullet impacting multiple test[J]. Chinese Journal of Explosives & Propellants, 2009(4): 41-44.
- [6] Cook M D, Haskins P J. Briggs R I, et al. An investigation into the mechanisms responsible for delayed detonations in projectile impact experiments [C] //13th International Detonation Symposium. Norfolk: Office of Naval Research. 2006: 814–821.
- [7] 吕春玲, 狄建华, 刘玉存. 冲击波起爆热点点火阶段的影响因素
 [J]. 火工品, 2000(4): 10-15.
 LU Chun-ling, DI Jian-hua, LIU Yu-cun. Influence factors of hot spot ignition period in shock wave initiation[J]. *Initiators & Pyrotechnics*, 2000(4): 10-15.
- [8] 孙承纬. 爆炸物理学[M]. 北京: 科学出版社, 2011.
- [9] 孙承纬,卫玉章,周之奎.应用爆轰物理[M].北京:国防工业 出版社,2000.
- [10] 马平,李建民,杨荣杰. HTPB 基 PBX 的模量与撞击感度的关系
 [J]火炸药学报,2006,29(4):58-60.
 MA Ping, LI Jian-min, YANG Rong-jie. Relationship between the impact sensitivity and modulus of HTPB-based PBX[J]. Chinese Journal of Explosives & Propellants, 2006, 29(4):58-60.
- [11] 徐永江,金韶华,欧育湘.三种粒度 ε-六硝基六氮杂异伍兹烷热 分解及撞击感度研究[J].火炸药学报,2001,24(1):47-48.
 XU Yong-jiang, JIN Shao-hua, OU Yu-xiang. Study on decomposition and impact sensitivity of ε-Hexanitrohexaazaisowurtzitane in three particle sizes[J]. Chinese Journal of Explosives & Propellants, 2001, 24(1):47-48.

XI Peng^{1,2}, NAN Hai¹, NI Bing¹, YANG Jian-gang¹, JIA Xian-zhen¹, ZHENG Ya-feng¹

(1. Xi'an Modern Chemistry Research Institute, Xi'an 710065, China; 2. School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China)

Abstract: In order to explore the vulnerability of Comp. B explosive at different temperatures and evaluate the effects of penetration depth and ambient temperature on the reaction level of Comp. B explosive, the armor-piercing incendiary of 12.7mm was used to penetrate Comp. B explosive at a speed of 850 m \cdot s⁻¹. The response characteristics of Comp. B explosive at -40,25,70 °C were studied. The processes of bullet penetration were simulated by the non-linear finite element software ANSYS/LS-DYNA and the influences of mechanical properties of Comp. B explosives on vulnerability were investigated. Results show that the limit penetration depth of Comp. B explosive is 200 ~ 250 mm at 25 °C. The highest level of response for Comp. B explosive at -40, 25 and 70 °C are deflagration, explosion and deflagration, respectively. The level of reaction of bullet penetration to Comp. B explosive is restrained at high temperature or low temperature. The decrease of shear modulus strength of Comp. B charges makes the degrees of response to Comp. B explosives reduce.

Key words: explosion mechanics; Comp. B explosive; vulnerability; bullet penetration; limit penetration depth

 CLC number: TJ55; O389
 Document code: A
 DOI: 10.3969/j.issn.1006-9941.2014.01.013