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h = a( T, = T.) . (8) Tab. 2 Distribution of the particle diameter of
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Tab. 1 Distribution of the particle diameter 2 °
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the pulverized coal and air flow in the chain grate boiler can obviously enhance the disturbance in the furnace dis—
tribution of the temperature in the furnace will be more uniform the filling degree of the flame in the furnace will be
better the temperature of the flue gases in the furnace will increase by about 100 to 200 K as a whole and attain
1 500 to 2 000 K in the high temperature zones thus enhancing the thermal efficiency and capacity of the chain

grate boiler. Key words: chain—grate boiler compound combustion speed field temperature field numerical simula—

tion
300 MW = Study of the Heat Transfer in the Sparse Phase Zones of a
300 MW Circulating Fluidized Bed Boiler /SUO Jiang-shun CUI Zhi—gang ( College of Electrical and

Power Engineering Taiyuan University of Science and Technology Taiyuan China Post Code: 030024) HOU Zhi-
fu ( Shanxi Pingshuo Gangue Power Generation Co. Lid. Shuozhou China Post Code: 036800) //Journal of Engi—
neering for Thermal Energy & Power. —2016 31(9). -69 ~74

The heat transfer in a CFD boiler burning gangue was studied. With a 300 MW CFD boiler in Shanxi Pingshuo Pow—
er Plant serving as an example the core-annulus model and particle cluster update model were used to model estab—
lish and calculate the distribution of the heat transfer coefficient in the sparse phase zones as the focus. The model
thus established has taken account of the actual characteristics of the distribution of the temperature in the circulat—
ing fluidized bed in the furnace and was corrected and updated according to the data of the temperature actually
measured on the spot. Finally changes of the convection and radiation heat exchange coefficient at various loads a—
long the height of the furnace were studied. It has been found that when the boiler is operating at a relatively high
load the fluctuation in load has relatively small influence on the time-averaged particle cluster wall surface covering
share and therefore so does the fluctuation in load on the convection heat exchange inside the furnace. The deviation
of the temperature in the annulus zones in the furnace along the height of the circulating fluidized bed will somehow
decrease and has bigger influence on the radiation heat exchange than on the convection heat exchange. With an in—
crease of the load the decline of the convection heat exchange coefficient along the height of the furnace will in—
crease while the decline of the radiation heat exchange coefficient along the height of the furnace will decrease. At a
high load the total indurnace heat exchange coefficient along the height of the furnace will decrease by around 25%
while at a low load will decrease by about 28% . At a high load the temperature difference in the furnace along the
height of the furnace will become smaller and the heat transfer will be more stable. Key words: underpants’leg type

CFD boiler gangue sparse phase zone heat transfer coefficient

LCA FGD = Resource Consumption of the Ultra Low
Emissions from a Coal-fired Boiler in the Process of Flue Gas Desulfurization ( FGD) and Evaluation of the
Impact on the Environment Based on the Life Cycle Assessment ( LCA) /HAN Tao PAN Wei-guo
WANG Wen-huan ( Shanghai University of Electric Power Shanghai China Post Code: 200090) DING Cheng—

gang ( Power Plant Environmental Protection Engineering Co. Ltd. Shanghai Electrical Group Corporation Shang—



