基于 ZIF-8@Ag/MWCNTs 的绿原酸电化学传感器的构建 及应用

董雷超,王红磊,陈炫宏,南希骏,嵇威,厉佳怡,盛桂华,周泉城

(山东理工大学农业工程与食品科学学院,农产品功能化技术山东省高校重点实验室,山东淄博 255049) 摘要:构建了用于定量分析绿原酸的 ZIF-8@Ag/MWCNTs 电化学传感器。Ag 纳米粒子具有良好的导电性和电催化能力,而 ZIF-8 优秀的比表面积能有效的分散 Ag 纳米粒子,因此在室温合成 ZIF-8 后,在 ZIF-8 表面原位还原 Ag⁺制备 ZIF-8@Ag 复合材料。然后,以 MWCNTs 作为基底材料,复合 ZIF-8@Ag 获得修饰工作电极,获得高灵敏度的电化学传感器用于绿原酸的测定。通过循环伏安法 (CV)、电化学阻抗谱(EIS)和差分脉冲伏安法(DPV),探讨了 ZIF-8@Ag/MWCNTs/GCE 的电化学传感性能。在优化的实验条件 下,绿原酸标准品浓度在 5×10⁻⁸ mol/L~1×10⁻⁵ mol/L 范围内与氧化峰电流具有良好的线性关系,检出限为 1.36×10⁻⁸ mol/L (S/N=3)。 探究了修饰电极的抗干扰性、重复性和再现性,结果表明电极抗干扰能力较强,重复性及再现性表现良好。用于实际样品绿咖啡豆稀 释液的检测时,加标回收率在 96.34%~103.34%。该方法简便、可靠,可用于绿原酸及绿原酸实际样品的快速定量分析。

关键词: ZIF-8; 银纳米粒子; 绿原酸; 电化学传感器 文章篇号: 1673-9078(2022)05-304-312

DOI: 10.13982/j.mfst.1673-9078.2022.5.0873

Construction and Application of Chlorogenic Acid Electrochemical Sensor

Based on ZIF-8@Ag/MWCNTs

DONG Leichao, WANG Honglei, CHEN Xuanhong, NAN Xijun, JI Wei, LI Jiayi, SHENG Guihua, ZHOU Quancheng^{*}

(School of Agricultural Engineering and Food Science, Key Laboratory of Agricultural Products in Shandong Province, Shandong University of Technology, Zibo 255049, China)

Abstract: ZIF-8@Ag/MWCNTs electrochemical sensors were prepared and used for the quantitative analysis of chlorogenic acid. Ag nanoparticles have good electrical conductivity and electrocatalytic ability, and they can be effectively dispersed by the excellent specific surface area of ZIF-8. Therefore, ZIF-8@Ag nanocomposites were prepared by Ag^+ in-situ reduction on the surface of ZIF-8 after ZIF-8 was synthesized at room temperature. Then, MWCNTs was used as the substrate and compounded with ZIF-8@Ag to form a modified working electrode, a highly sensitive electrochemical sensor was obtained for the analysis of chlorogenic acid. The electrochemically sensing capability of ZIF-8@Ag/MWCNTs/GCE was explored *via* cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) techniques. Under the optimized experimental conditions, the standard substance concentration of chlorogenic acid had a good linear relationship with oxidation peak current in the range of 5×10^{-8} mol/L $\sim 1 \times 10^{-5}$ mol/L. The detection limit can be as low as 1.36×10^{-8} mol/L (S/N=3). The anti-interference ability, and reproducibility of the modified electrode were investigated, and the results showed that the electrode had a strong anti-interference ability, and performed well in repeatability and reproducibility. When it is used for the detection of the actual sample green coffee bean diluent, the recovery rate was between 96.34%~103.34%. The method is simple and reliable,

引文格式:

董雷超,王红磊,陈炫宏,等.基于 ZIF-8@Ag/MWCNTs 的绿原酸电化学传感器的构建及应用[J].现代食品科技,2022,38(5):304-312.

DONG Leichao, WANG Honglei, CHEN Xuanhong, et al. Construction and application of chlorogenic acid electrochemical sensor based on ZIF-8@Ag/MWCNTs [J]. Modern Food Science and Technology, 2022, 38(5): 304-312

通讯作者:周泉城(1977-),男,博士,副教授,研究方向:功能性食品,E-mail: zhouquancheng@126.com

收稿日期: 2021-08-09

基金项目:山东省重点研发计划项目(2019GNC106084);山东理工大学招远工业技术研究院创新研究基金(9101-220193)

作者简介: 董雷超(1996-), 男, 硕士研究生, 研究方向: 功能性食品, E-mail: dong19960720@163.com

and can be used for rapid quantitative analysis of chlorogenic acid and actual samples of chlorogenic acid.

Key words: ZIF-8; silver nanoparticles; chlorogenic acid; electrochemical sensor

绿原酸(CGA)是一种分布广泛,具有显著酚结 构的抗氧化物质,是咖啡酸和奎尼酸的结合物^[1],分 布于各类水果和蔬菜中,尤其是咖啡中富含绿原酸^[2]。 研究表明,绿原酸具有抗氧化性^[3]、抗癌活性^[4]、抗炎 活性^[5]、抗病毒活性^[6]等,已被广泛应用于保健、医疗 和食品加工等行业^[7-9]。由于绿原酸重要的功能特性, 近年来对绿原酸的检测分析也越发引起人们的关注。 目前对绿原酸的常见检测方法有比色法^[10]、高效液相 色谱法^[11]、联用法^[12]、荧光传感器法^[13]及电化学分析 法^[14]等。其中,电化学分析方法操作简便,成本低、 准确度高,是一种具有良好前景的检测方法。

金属有机框架材料(MOFs),是一类新型多孔晶 体材料,具有众多优势,如大比表面积、高孔隙度、 化学稳定性、可调节孔径、结构灵活可调节等^[15,16]。 基于这些独特的特征,MOF 在分离^[17]、储气^[18]、催 化^[19]、药物递送^[20]、传感器^[21]等领域得到了广泛的应 用。ZIF-8(沸石咪唑酯骨架-8)是一种由 Zn²⁺和 2-甲基咪唑构建的一种 MOFs,易于制备,且具有良好 的水热稳定性、化学稳定性^[22]。ZIF-8 也被应用于电 化学传感领域,但是由于 MOFs 的弱导电性,一般将 高导电性和催化活性物质引入 ZIF-8 中,进一步提高 改性电极的灵敏度。其中,金属纳米颗粒常用于修饰 MOFs,如 Au、Ag、Pt 等贵金属是常见的修饰用材料, 能够使复合材料表现出显著增强的电化学性能,促进 电子转移率的增加。

本研究通过 ZIF-8 与 Ag 纳米颗粒复合,与羧基 化的碳纳米管共同修饰到电化学传感器的工作电极表 面,改善其导电性及电催化性能,以获得电化学传感 器在检测绿原酸时的灵敏信号。实验结果表明,修饰 行为可以有效的提高电化学传感器对绿原酸的检测能 力。在优化条件下,可以简单高效的测定绿咖啡豆中 的绿原酸含量。

1 材料与方法

1.1 原料

2-甲基咪唑、乙酸锌(纯度≥99%),上海爱纯生物科技有限公司;氧化铝抛光粉,上海辰华仪器有限公司;AgNO₃(分析纯),国药集团化学试剂有限公司;MWCNTs(羧基化多壁碳纳米管),江苏先丰纳米材料科技有限公司;壳聚糖,上海爱纯生物科技有限公司;绿原酸(5-CQA),上海源叶生物科技有限公

司; 其他实验试剂均为分析纯; 试验用水为二次蒸馏 水; 绿咖啡豆购自当地超市。

1.2 主要仪器设备

CHI760E 电化学工作站,上海辰华仪器有限公司; 玻碳电极,上海辰华仪器有限公司;Ag/AgCl 电极, 上海辰华仪器有限公司;铂丝电极,上海辰华仪器有 限公司;quanta 250 场发射扫描电子显微镜,美国 FEI, 用于查看所制备样品的形态特征,使用配套的 X 射线 能谱仪获得样品的能量色散 X 射线光谱图; WJGS-009X 射线衍射仪,德国 BrukerAXS,用于获得 粉末 X 射线衍射图谱;Nicolet 5700 傅里叶变化红外 光谱仪,美国 Thermo Nicolet,用于获得样品的红外 光谱图;ASAP 2460 比表面积及孔径分析仪,美国 Micromeritics,用于获取样品的比表面积。

1.3 实验方法

1.3.1 室温下制备 ZIF-8

参考文献^[23]制备 ZIF-8。准确称量 275 mg(1.5 mmol) 乙酸锌和 985 mg(12 mmol) 2-甲基咪唑,分 别溶解在 90 mL 无水乙醇中。在磁力棒搅拌下,将后 一种澄清溶液倒入前一种澄清溶液中。合并各组分溶 液后搅拌 1 h,停止搅拌。静置 24 h 后,通过离心(4000 r/min) 将固体与乳状胶态分散体分离。用无水乙醇洗 涤 4 次后,将产物在 60 ℃真空干燥箱中干燥 24 h,获 得 ZIF-8 粉末。

1.3.2 制备 ZIF-8@Ag

参考文献^[24]并做适当调整制备 ZIF-8@Ag,取 20 mg ZIF-8,超声 10 min 分散在 30 mL 乙醇中,滴加 0.1 mL AgNO₃ (5 mg/mL) 溶液,继续搅拌 6 h。加入 1 mL BNaH₄ (0.076 g/L) 碱性水溶液,持续搅拌 1 h,将所得乳浊液通过离心 (4000 r/min)将沉淀物分离出 来,依次用用无水乙醇洗涤 4 次,将产物在 60 ℃真 空干燥箱中干燥 24 h,获得 ZIF-8@Ag 粉末。

1.3.3 修饰电极的制备

将裸玻碳电极 (GCE) 依次用 1.0、0.3、0.05 µm 的氧化铝粉末精心打磨,并在每种粉末打磨后用无水 乙醇和蒸馏水各超声清洗 3 min。将打磨好的电极用 高纯氮气吹干备用。取 0.5 mL 3%壳聚糖溶液加 4.5 mL 水,溶解 5 mg MWCNTs,搅拌后超声 10 min,所 得溶液用移液器取 4 µL 用于滴涂电极,获得 MWCNTs/GCE 电极,在 50 ℃烘箱中烘干后备用。取 20 mg ZIF-8@Ag 粉末用 10 mL 乙醇溶解,所得乳浊 液取 1 mL 与 1 mL 3%壳聚糖溶液混合超声分散后在 上述的 MWCNTs/GCE 修饰电极上滴加 2 µL,获得 ZIF-8@Ag/MWCNTs/GCE 电极,在 50 ℃烘箱中烘干 后备用。取 0.01 g ZIF-8 添加到 10 mL 乙醇中,超声 分散 10 min 后,滴加 2 µL 到裸玻碳电极,再滴加 2 µL 3%的壳聚糖溶液固定,获得 ZIF-8/GCE 电极,在 50 ℃ 烘箱中烘干后备用,ZIF-8@Ag 处理方式同 ZIF-8。

1.3.4 电化学测试

电化学测试均在电化学工作站 CHI760E 上完成, 采用三电极系统:工作电极为 GCE 或修饰 GCE,参 比电极为 Ag/AgCl 电极,对电极为铂丝电极。PBS 缓 冲液由 0.1 mol/L 的 NaH₂PO₄和 0.1 mol/L 的 Na₂HPO₄ 配制而成,调整比例获得不同 pH 的缓冲液,加入 0.1 mol/L 的 KCl 为支持电解质。通过将 0.3540 g 的绿原 酸溶解在 100 mL 的无水乙醇中来制备 0.01 mol/L 的 绿原酸储备液。工作标准溶液是通过用所需 pH 的 PBS 缓冲液逐步稀释绿原酸储备液到相应浓度而获得的, 绿原酸储备液配置后放 4 ℃冰箱储存备用。所有测量 均在室温下进行。

1.3.5 样品处理

将购买的绿咖啡豆样品使用多功能粉碎机粉碎 5 min,将其打磨成粉末状。精确称取 1g 粉末,将其分 散在 50 mL 的水/乙醇混合液(体积比 50:50)中,将 样品混合液置于超声浴中 5 min,然后在水浴(70℃) 中萃取 20 min,然后通过滤纸过滤,在环境温度下冷 却,然后通过 0.45 μm PTFE 过滤器过滤以除去所有沉 淀物。在即将测量之前,将提取液用 PBS 缓冲液 (pH=6)稀释 50 倍。向 10 mL 的样品稀释液中依次 添加绿原酸标准品溶液,以计算加标回收率。

1.4 数据统计分析

本文中设计的数据统计分析和绘图均采用 Origin 2018 软件完成。

2 结果与讨论

2.1 修饰材料的表征

图 1 给出了 ZIF-8 和 ZIF-8@Ag 的傅里叶变换红 外光谱图。右侧的 421 cm⁻¹ 处的峰可以归因于 Zn-N 的伸缩振动,而出现在 1586 cm⁻¹ 处的峰则对应于 C=N 伸缩振动,1422 或 1458 cm⁻¹ 处的峰值与环的伸缩振 动有关,2930 cm⁻¹ 处的峰对应环外甲基饱和 C-H 的伸 缩振动,3134 cm⁻¹ 处的峰对应环内不饱和 C-H 的伸缩 振动,与文献^[25]一致。并且,光谱图中 ZIF-8@Ag 各 峰基本与 ZIF-8 各峰一致,表明 ZIF-8@Ag 的制备不 会破坏 ZIF-8 的表面基团。

Fig.1 Fourier transform infrared spectra of ZIF-8 and

ZIF-8@Ag

为了进一步探究形成 ZIF-8@Ag 复合物后, ZIF-8 的结构是否被破坏,测定了 ZIF-8 及 ZIF-8@Ag 复合物的特征晶体衍射峰,如图 2 所示,观察到大约在 7.5°、10.5°、12.5°和18°处的几处主衍射峰,分别 对应 ZIF-8 的(110)、(200)、(211)和(222)晶面,与文献基本一致^[26]。这些特征衍射峰说明成功获得了 ZIF-8 晶体,并且 ZIF-8 具有良好的晶型。所得 ZIF-8@Ag 复合物的特征晶体衍射峰与 ZIF-8 的 X 射线衍射图谱基本一致,各峰没有明显变化。这表明 ZIF-8 在形成 ZIF-8@Ag 复合物的过程中仍然保持本 身的形态结构,与上述红外光谱表征所得的结果相吻 合。

图 2 ZIF-8@Ag、ZIF-8 和 ZIF-8 标准卡片的 X 射线衍射图 Fig.2 X-ray diffraction patterns of ZIF-8@Ag, ZIF-8 and

simulated ZIF-8

通过氮气吸脱附实验测定修饰前后 ZIF-8@Ag 的 比表面积变化,测定结果为 ZIF-8 的 BET 比表面积为 1365.44 m²/g, ZIF-8@Ag 的 BET 比表面积为 1290.73 m²/g, ZIF-8@Ag 复合材料的比表面积接近于纯 ZIF-8。 这表明 Ag 纳米粒子在 ZIF-8 表面成功修饰,且 ZIF-8@Ag 保持了纯 ZIF-8 的高比表面积的优良特性。

利用扫描电镜对所制备的 ZIF-8 及 ZIF-8@Ag 进

现代食品科技

Modern Food Science and Technology

2022, Vol.38, No.5

行表征,由图 3a,b 可见,ZIF-8 为较为规整的菱形 十二面体,粒径为 250 nm 左右,具有较窄的粒径分 布范围。在 ZIF-8 表面使用 BNaH₄ 原位还原 Ag⁺制备 ZIF-8@Ag,所得产物如图 3c 所示,ZIF-8 主体结构 形态保持稳定,而 Ag 纳米颗粒较为均匀的分散在 ZIF-8 表面,图 3d 为能量色散 x 射线光谱图中 Ag 的 元素分布,进一步证明 Ag 纳米颗粒较为均匀的分散 在各 ZIF-8 表面。

图 3 (a、b) 在不同放大倍数下 ZIF-8 的扫描电镜图像; (c) ZIF-8@Ag 的扫描电镜图像; (d) 能量色散 x 射线光谱图中的 Ag Fig.3 (a, b) Scanning electron microscopy images of ZIF-8 under different magnification; (c) Scanning electron microscopy images of ZIF-8@Ag; (d) Energy dispersive spectroscopy mapping images of Ag

如图 4a 所示,一定粒径范围内的 Ag 纳米颗粒相 对均匀的分布在 ZIF-8 表面,由图 4b 可得,所示纳米 颗粒的晶格间距为 0.236 nm,与 Ag(111)的晶格间距 很好地吻合,对应所获得的银纳米颗粒。

图 4 不同放大倍数下的 ZIF-8 的透射电子显微镜图 Fig.4 Transmission electron microscope images of ZIF-8@Ag under different magnification

2.2 修饰材料的电化学表征

以 $K_3[Fe(CN)_6]/K_4[Fe(CN)_6]体系为探针,分别将$ $裸 玻 碳 电 极 及 修 饰 电 极 置 于 <math>5 \times 10^{-3}$ mol/L $K_3[Fe(CN)_6]/K_4[Fe(CN)_6]和 0.1 mol/L KCl 的混合溶液$ 中测试了不同修饰电极的循环伏安行为 (CV)和电化学阻抗 (EIS)。如图 5 所示,在 GCE 上观察到一对 $可逆且明确的氧化还原峰,峰电位差 (<math>\Delta E_p$)为 80 mV 左右。修饰 ZIF-8 后,因为 ZIF-8 本身的弱导电性, 电流信号相对于裸电极变化不大,而 GCE 修饰 ZIF-8@Ag 后电信号有一定增强。另一方面,在羧基 化多壁碳纳米管的存在下修饰电极获得了较高的峰值 电流,因为与裸玻碳电极相比,羧基化多壁碳纳米管 的高电导率支持快速的电子转移。ZIF-8@Ag/ MWCNTs/GCE 的 CV 响应呈现最高电流信号,可能 是因为 Ag 纳米粒子在具有高比表面积的 ZIF-8 表面 均匀分布,Ag 纳米粒子的优良导电性配合羧基化多壁 碳纳米管的高电导率,协同提高了复合材料的电子转 移速率。循环伏安测试实验结果表明 ZIF-8@Ag/ MWCNTs 修饰电极具有良好的导电性,有可能实现更 灵敏的检测。

ZIF-8@Ag/MWCNTs/GCE 的循环伏安图

Fig.5 Cyclic voltammetric curves of GCE, ZIF-8/GCE,

ZIF-8@Ag/GCE, MWCNTs/GCE and

Fig.6 Electrochemical impedance diagram of GCE, ZIF-8/GCE,

ZIF-8@Ag/GCE, MWCNTs/GCE and

ZIF-8@Ag/MWCNTs/GCE

如图 6 所示,测试了裸 GCE 电极、ZIF-8/GCE 电极、MWCNTs/GCE 电极、ZIF-8@Ag/MWCNTs/GCE 电极的电阻抗行为。电化学阻抗谱的奈奎斯特图包括 在高频观察到的半圆形部分和在低频观察到的线性部 分,分别对应于电子转移和物质转移过程,半圆形的 直径对应于转移电阻 (R_{ct}),在图 6 的插图中展示了 相应的等效电路模型。裸玻碳电极的阻抗值估计为 181.4 Ω,修饰了 ZIF-8 的玻碳电极的抗值估计为 446.3 Ω,阻抗值相较于裸玻碳电极明显增大,表明 ZIF-8 的不良电导率阻碍了电子的转移,ZIF-8@Ag/GCE 抗 值估计为 289.1 Ω,阻抗值 GCE<ZIF@Ag/GCE <ZIF/GCE,在修饰了 MWCNTs 或 ZIF-8@Ag/ MWCNTs 之后,可以明显的发现 MWCNTs/GCE 及 ZIF-8@Ag/MWCNT/GCE,由于 MWCNTs 上层存在 ZIF-8@Ag/MWCNT/GCE,由于 MWCNTs 上层存在

Fig.7 Cyclic voltammetric curves of GCE and

ZIF-8@Ag/MWCNTs/GCE in chlorogenic acid solution

在含 5×10⁻³ mol/L K₃[Fe(CN)₆]/K₄[Fe(CN)₆]体系、 0.1 mol/L 的 KCl 的电解液中使用 CV 测试裸 GCE、 ZIF-8/GCE 、 ZIF-8@Ag/GCE 、 MWCNTs/GCE 和 ZIF-8@Ag/MWCNTs/GCE,并据此计算各电极的电活 性面积。准可逆反应的电极活性面积采用 Randles-Sevcik 方程^[27]计算,如下所示:

 $I_{\rm p} = 2.65 \times 10^5 A D^{1/2} n^{3/2} v^{1/2} C$

式中:

A--电极电活性表面积, cm²;

D--铁氰化物的扩散系数, cm²/s;

$$C$$
——铁氰化物在本体溶液中的浓度, mol/cm^3 ;

ν--扫描速, V/s。

计算出的裸 GCE、ZIF-8/GCE、MWCNTs/GCE、 ZIF-8@Ag/GCE 和 ZIF-8@Ag/MWCNTs/GCE 电活性 面积分别估计为 0.06、0.08、0.10、0.22、0.36 cm²。 上述电化学表征结果表明, ZIF-8@Ag/MWCNTs 复合 材料可以扩大电活性表面积,加速分析物和电极之间 的电子转移,从而 ZIF-8@Ag/MWCNTs/GCE 可用于 绿原酸的灵敏测定。 为测试电极修饰对绿原酸检测的影响,分别用 GCE和ZIF-8@Ag/MWCNTs/GCE对1×10⁻⁵ mol/L浓 度的绿原酸缓冲液 (pH=7)进行 CV 扫描,发现相对 于裸电极,ZIF-8@Ag/MWCNTs/GCE 的 CV 曲线中电 流信号显著增强,修饰的碳纳米管和ZIF-8@Ag 使得 电极具有较大的活性表面作用于绿原酸的氧化还原过 程,复合材料对于这一过程具有良好的电催化作用, 最终促使电流响应增强。

2.3 实验条件的优化

2.3.1 pH 的影响

在图 8 中给出了不同 pH 条件 (pH=5.0、6.0、7.0、8.0、9.0)对 1.00×10⁻³ mol/L 绿原酸在 ZIF-8@Ag/MWCNTs/GCE 上 CV 扫描的影响。可以发现绿原酸的峰电位随溶液 pH 的变化而变化,随 pH 增大电位逐渐左移。各 pH 条件下的 CV 结果表明在缓冲液 pH 为 6.0 时, ZIF-8@Ag/MWCNTs/GCE 测定绿原酸时有最高的峰电流信号,因此在后续的测试中也使用 pH 为 6.0 的 PBS 缓冲液进行测试。

图 8 ZIF-8@Ag/MWCNTs/GCE 在不同 pH 条件下的绿原酸溶液中的 CV 扫描结果

Fig.8 Cyclic voltammetric curves of GCE, ZIF-8/ GCE, MWCNTs/GCE and ZIF-8@Ag/MWCNTs/GCE in different pH values of chlorogenic acid solution

2.3.2 扫描速率的影响

研究了 ZIF-8@Ag/MWCNTs/GCE 在不同扫描速 率(0.01、0.02、0.03、0.04、0.05、0.03、0.07、0.08、 0.09、0.10 V/s)下对 1.00×10⁻⁴ mol/L 绿原酸 CV 扫描 的影响。如图 9a 所示,阳极峰值电流随着扫描速率从 0.01 到 0.10 V/s 的增加而增加。同时,氧化峰电流(I_{pa}) 与扫描速率的平方根(v^{1/2})呈良好线性关系。线性回 归方程可表示为:

 $I_{\rm pa}({\rm mA}) = -0.0289 + 0.435v^{1/2}(V^{1/2}s^{-1/2}), R^2 = 0.99198$

表明绿原酸在 ZIF-8@Ag/MWCNTs/GCE 上的电化学过程是受扩散控制的过程。

图 9 (a)ZIF-8@Ag/MWCNTs/GCE 在各种扫描速率下的绿原酸 CV 结果;(b)氧化峰值电流与扫描速率平方根的关系图 Fig.9 (a) Cyclic voltammetric curves of chlorogenic acid on GCE, ZIF-8/GCE, MWCNTs/GCE and ZIF-8@Ag/MWCNTs/GCE at different scan rates; (b) The

relationship between oxidation peak current and scan rate

2.4 线性范围及检出限

差分脉冲伏安法(DPV)用于测定 ZIF-8@Ag/MWCNTs/GCE 检测绿原酸的线性范围和 检出限(LOD)。ZIF-8@Ag/MWCNTs/GCE修饰电极 测定不同浓度绿原酸的 DPV 曲线在图 10a 中给出,峰 电流强度与 CGA 的浓度在以下范围内呈线性关系: 5×10⁻⁸~1×10⁻⁵ mol/L。线性关系式为:

 $I(\mu A) = 6.4727C(\mu mol / L) + 0.6978, R^2 = 0.99812$

图 10 (a) ZIF-8@Ag/MWCNTs/GCE 修饰电极测定不同浓度绿原 酸的 DPV 曲线;(b)峰值电流与浓度的关系图

Fig.10 (a) Differential pulse voltammetry curves of different concentrations of chlorogenic acid on

ZIF-8@Ag/MWCNTs/GCE; (b) The relationship between oxidation peak current and concentration

根据 3Sb/S 计算检出限 (LOD),其中 Sb 是空白 测量的标准偏差(n=11), S 是校准图的斜率。发现 LOD 为 1.36×10⁻⁸ mol/L。本研究中获得的 LOD 表明, 设计的ZIF-8@Ag/MWCNTs/GCE对CGA的测定比较 敏感,检测限较低。将本研究方法与其他先前报道的 绿原酸电化学传感器方法进行比较,如表1所示。显 然,本研究方法具有较宽的检测范围及较低的检测限, 表明 ZIF-8@Ag/MWCNTs/GCE 可以作为灵敏的绿原 酸电化学传感器使用。

Table 1 Comparison of different chlorogenic acid electrochemical sensors					
修饰电极	方法	线性范围/(µmol/L)	检测限/(μmol/L)		
Ir-BMI.PF6-PPO/CPE ^[28]	SWV	3.48~49.50	0.915		
MIS/Au/GCE ^[29]	DPV	5~14	0.18		
Boron-doped diamond ^[30]	SWV	0.56~147	0.126		
PASA/GCE ^[31]	CV	0.40~12	0.04		
Molecularly imprinted polypyrrole/PGE ^[32]	Potentiometry	1~10000	1.00		
MWCNTS / SPE ^[33]	DPV	0.48~44.59	0.34		
Fe ₃ O ₄ @MIL-100(Fe)/GCE ^[34]	DPV	0.10~460	0.05		
ZIF-8@Ag/ MWCNTs / GCE	DPV	0.05~10	0.0136		

Table 1 Comparison of different	ent chlorogenic	acid electrochemical s	enso
经份计扣		 此け 国 (() 1 (1)	1/

表 1 不同绿原酸电化学传感器的比较

2.5 修饰电极的抗干扰性、重复性、再现性

以氧化峰信号强度的±5%范围为允许相对误差, DPV 测试结果表明 100 倍浓度的 Na⁺、Cl⁻、K⁺、NO³⁻、 SO₄²⁻、Ca²⁺、肌酸、腺嘌呤、蔗糖、果糖、葡萄糖对 200 μmol/L 绿原酸的测定几乎没有影响,如图 11 所 示。因此,可以认为该方法具有较好的抗干扰性,可 以在实际样品中进一步应用于绿原酸的检测。

酸的影响

Fig.11 The influence of interfering species on the determination of chlorogenic acid at ZIF-8@Ag/MWCNTs/GCE modified

electrode

为了验证重复性,在制备好 ZIF-8@Ag/MWCNTs/ GCE 修饰电极后,在含 5 μmol/L 绿原酸 PBS 缓冲液 中用同一电极连续测试 9 次 DPV,峰值电流的相对标 准偏差(RSD%)为 2.04%,这一结果表明制备的修 饰电极在测定一定浓度的绿原酸时具有良好的重复 性,如图 12a 所示。为了评估再现性,同时用同一流 程制备的 5 根修饰电极进行测试,在含 5 μmol/L 绿原 酸 PBS 缓冲液中通过 DPV 测量峰值电流的相对标准 偏差(RSD)为 4.25%,证明所提出的传感器具有良

图 12 (a) ZIF-8@Ag/MWCNTs/GCE 修饰电极重复性测试结果; (b) ZIF-8@Ag/MWCNTs/GCE 修饰电极重复性测试结果

Fig.12 Repeatability (a) and reproducibility (b) performance of ZIF-8@Ag/MWCNTs/GCE

2.6 实际样品的检测

通过标准添加方法进行回收率实验,以绿原酸标准品(5-CQA)的校准曲线作为定量标准,每个浓度水平测试三次。如表2所示,该传感器具有96.34%至103.34%的较优回收率,这表明这项工作中的绿原酸电化学传感器可以应用于实际含绿原酸样品的分析。

	Tuble 2 Determinut	on of the emotogenie deld i	n reur sumpr	65
样品	绿原酸添加量/(µmol/L)	绿原酸检出量/(µmol/L)	回收率/%	相对标准偏差/%
	0.00	1.22	-	2.13
经咖啡币	1.00	2.25	103.34	2.74
球咖啡豆	2.00	3.25	101.58	3.52
	3.00	4.11	96.34	3.26

表 2	具头杆品甲的球原酸的测定
Table 2 Determina	tion of the chlorogenic acid in real samples

3 结论

本研究在常温下制备 ZIF-8 颗粒,并以银纳米粒 子修饰,将 ZIF-8@Ag 与羧基化多壁碳纳米管结合共 同修饰玻碳电极,构建了一种新型的用于绿原酸检测 的电化学传感器。ZIF-8 颗粒具有的大比表面积负载 了均匀分布的银纳米颗粒,使用的多壁碳纳米管则进 一步促进了电子转移速率。在最佳实验条件下,该传 感器检测绿原酸在 5×10⁻⁸~1×10⁻⁵ mol/L 范围内表现出 良好的线性关系,检出限为 1.36×10⁻⁸ mol/L。此外, 该传感器成功地用于实际样品绿咖啡豆中绿原酸的检 测。

- Clifford M N. Chlorogenic acids and other cinnamates-nature, occurrence and dietary burden [J]. Journal of the Science of Food and Agriculture, 1999, 79: 362-372
- [2] Macheiner L, Schmidt A, Schreiner M, et al. Green coffee infusion as a source of caffeine and chlorogenic acid [J]. Journal of Food Composition and Analysis, 2019, 84: 103307
- [3] Šilarová P, Boulekbache-Makhlouf L, Pellati F, et al. Monitoring of chlorogenic acid and antioxidant capacity of *Solanum melongena* L. (eggplant) under different heat and storage treatments [J]. Antioxidants, 2019, 8(7): 234
- [4] Huang S, Wang L, Xue N, et al. Chlorogenic acid effectively treats cancers through induction of cancer cell differentiation
 [J]. Theranostics, 2019, 9(23): 6745-6763
- [5] Bisht A, Dickens M, Rutherfurd-Markwick K, et al. Chlorogenic acid potentiates the anti-inflammatory activity of curcumin in LPS-Stimulated THP-1 cells [J]. Nutrients, 2020, 12(9): 2706
- [6] Ma Q, Liang D, Song S, et al. Comparative study on the antivirus activity of Shuang-Huang-Lian injectable powder and its bioactive compound mixture against human adenovirus III *in vitro* [J]. Viruses, 2017, 9(4): 79
- [7] Wang Z, Lam K L, Hu J, et al. Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice [J].
 Food Science & Nutrition, 2019, 7(2): 579-588
- [8] Usman M S, Hussein M Z, Kura A U, et al. Chlorogenic acid intercalated gadolinium-zinc/aluminium layered double hydroxide and gold nanohybrid for MR imaging and drug delivery [J]. Materials Chemistry and Physics, 2020, 240: 12223
- [9] Wildermuth S R, Young E E, Were L M. Chlorogenic acid oxidation and its reaction with sunflower proteins to form green-colored complexes [J]. Comprehensive Reviews in Food Science and Food Safety, 2016, 15(5): 829-843
- [10] 胡居吾,吴磊,涂招秀,等.蔓三七叶中分离绿原酸和异绿原酸及其抗氧化活性研究[J].天然产物研究与开发,2019,31 (1):38-43

HU Juwu, WU Lei, TU Zhaoxiu, et al. Extraction and antioxidant activity of chlorogenic acids and isochlorogenic acids from *Gynura procumbens* (Lour.) Merr [J]. Natural Product Research and Development, 2019, 31(1): 38-43

[11] 肖作为,谢梦洲,甘龙,等.山银花、金银花中绿原酸和总黄酮 含量及抗氧化活性测定[J].中草药,2019,50(1):210-216 XIAO Zuowei, XIE Mengzhou, GAN Long, et al. Determination of chlorogenic acid, total flavones, and anti-oxidant activity of *Flos lonicerae japonicae* and *Flos* *lonicerae* [J]. Chinese Traditional and Herbal Drugs, 2019, 50(1): 210-216

[12] 李冉,齐芪,李赟,等.HPLC-MS/MS 检测杜仲中绿原酸等 4
 种活性成分的分析方法[J].北京林业大学学报,2016,38(6):
 123-129

LI Ran, QI Qi, LI Yun, et al. A method of HPLC-MS /MS to determine chlorogenic acid and other three kinds of active components in *Eucommia ulmoids* [J]. Journal of Beijing Forestry University, 2016, 38(6): 123-129

- [13] Liu Q, Dong Z, Hao A, et al. Synthesis of highly fluorescent carbon dots as a dual-excitation rationmetric fluorescent probe for the fast detection of chlorogenic acid [J]. Talanta, 2021, 221: 121372
- [14] Yiğit A, Alpar N, Yardım Y, et al. A graphene-based electrochemical sensor for the individual, selective and simultaneous determination of total chlorogenic acids, vanillin and caffeine in food and beverage samples [J]. Electroanalysis, 2018, 30(9): 2011-2020
- [15] Kempahanumakkagari S, Vellingiri K, Deep A, et al. Metal-organic framework composites as electrocatalysts for electrochemical sensing applications [J]. Coordination Chemistry Reviews, 2018, 357: 105-129
- [16] Deng X, Hu J, Luo J, et al. Conductive metal-organic frameworks: mechanisms, design strategies and recent advances [J]. Topics in Current Chemistry, 2020, 378(27)
- [17] Chen X, Chen D, Li N, et al. Modified-MOF-808-loaded polyacrylonitrile membrane for highly efficient, simultaneous emulsion separation and heavy metal ion removal [J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39227-3923
- [18] Bonneau M, Lavenn C, Ginet P, et al. Upscale synthesis of a binary pillared layered MOF for hydrocarbon gas storage and separation [J]. Green Chemistry, 2020, 22(3): 718-724
- [19] Tran Y B N, Nguyen P T K, Luong Q T, et al. Series of M-MOF-184 (M=Mg, Co, Ni, Zn, Cu, Fe) metal-organic frameworks for catalysis cycloaddition of CO₂ [J]. Inorganic Chemistry, 2020, 59(22): 16747-16759
- [20] Cai M, Qin L, You L, et al. Functionalization of MOF-5 with mono-substituents: effects on drug delivery behavior [J]. RSC Advances, 2020, 10(60): 36862-36872
- [21] Salman F, Zengin A, Çelik KazicI H. Synthesis and characterization of Fe₃O₄-supported metal-organic framework MIL-101(Fe) for a highly selective and sensitive hydrogen peroxide electrochemical sensor [J]. Ionics, 2020, 26(10): 5221-5232
- [22] Park K S, Ni Z, Cote A P, et al. Exceptional chemical and

Modern Food Science and Technology

thermal stability of zeolitic imidazolate frameworks [J]. Proceedings of the National academy of Sciences of the United States of America, 2006, 103(27): 10186-10191

- [23] Jiang Z, Sun H, Qin Z, et al. Synthesis of novel ZnS nanocages utilizing ZIF-8 polyhedral template [J]. Chemical Communications, 2012, 48(30): 3620
- [24] Chen B, Zhang Y, Lin L, et al. Au nanoparticles @ metal organic framework/polythionine loaded with molecularly imprinted polymer sensor: preparation, characterization, and electrochemical detection of tyrosine [J]. Journal of Electroanalytical Chemistry, 2020, 863: 114052
- [25] Ethiraj J, Bonino F, Lamberti C, et al. H₂S interaction with HKUST-1 and ZIF-8 MOFs: a multitechnique study [J]. Microporous and Mesoporous Materials, 2015, 207: 90-94
- [26] Jomekian A, Behbahani R M, Mohammadi T, et al. Utilization of pebax 1657 as structure directing agent in fabrication of ultra-porous ZIF-8 [J]. Journal of Solid State Chemistry, 2016, 235: 212-216
- [27] Brownson D A C, Banks C E. The Handbook of Graphene Electrochemistry [M]. London: Springer, 2014: 43-44
- [28] Fernandes S C, Moccelini S K, Scheeren C W, et al. Biosensor for chlorogenic acid based on an ionic liquid containing iridium nanoparticles and polyphenol oxidase [J]. Talanta, 2009, 79(2): 222-228

(上接第 319 页)

- [28] 邓莎,董怡,任尧,等.基于功能核酸的食品重金属污染快速 检测进展[J].现代食品科技,2021,37(7):335-343,320
 DENG Sha, DONG Yi, REN Yao, et al. Progress in rapid detection of heavy metal contamination in food based on functional nucleic acid [J]. Modern Food Science and Technology, 2021, 37(7): 335-343, 320
- [29] 李彤彤,孙晓红,张彦瑾,等.核酸适配体-荧光传感技术在重 金属检测领域的应用[J].分析测试学报,2021,40(4):478-487 LI Tongtong, SUN Xiaohong, ZHANG Yanjin, et al. Application of aptamer-based fluorescence sensor in the field of heavy metal detection [J]. Journal of Instrumental Analysis, 2021, 40(4): 478-487
- [30] Ravikumar A, Panneerselvam P, Radhakrishnan K, et al. DNAzyme based amplified biosensor on ultrasensitive fluorescence detection of Pb (II) ions from aqueous system

- [29] Santos W D J R, Santhiago M, Yoshida I V P, et al. Novel electrochemical sensor for the selective recognition of chlorogenic acid [J]. Analytica Chimica Acta, 2011, 695(1-2): 44-50
- [30] Yardım Y, Keskin E, Şentürk Z. Voltammetric determination of mixtures of caffeine and chlorogenic acid in beverage samples using a boron-doped diamond electrode [J]. Talanta, 2013, 116: 1010-1017
- [31] Chao M, Ma X. Voltammetric determination of chlorogenic acid in pharmaceutical products using poly (aminosulfonic acid) modified glassy carbon electrode [J]. Journal of Food and Drug Analysis, 2014, 22(4): 512-519
- [32] Koirala K, Sevilla F B, Santos J H. Biomimetic potentiometric sensor for chlorogenic acid based on electrosynthesized polypyrrole [J]. Sensors and Actuators B: Chemical, 2016, 222: 391-396
- [33] Ma X, Yang H, Xiong H, et al. Electrochemical behavior and determination of chlorogenic acid based on multi-walled carbon nanotubes modified screen-printed electrode [J]. Sensors, 2016, 16(11): 1797
- [34] Chen Y, Huang W, Chen K, et al. A novel electrochemical sensor based on core-shell-structured metal-organic frameworks: the outstanding analytical performance towards chlorogenic acid [J]. Talanta, 2019, 196: 85-91

[J]. Journal of Fluorescence, 2017, 27: 2101-2109

- [31] Liu Q, Wei Y, Luo Y, et al. Quantitative analysis of trace Pb (II) by a DNAzyme cracking-rhodamine 6G SERRS probe on Au core Ag shell nanosol substrate [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 128: 806-811
- [32] Zhang L, Han B, Li T, et al. Label-free DNAzyme-based fluorescing molecular switch for sensitive and selective detection of lead ions [J]. Chemical Communications, 2011, 47: 3099
- [33] Niu X, Zhong Y, Chen R, et al. A "turn-on" fluorescence sensor for Pb²⁺ detection based on graphene quantum dots and gold nanoparticles [J]. Sensors and Actuators B: Chemical, 2018, 255: 1577-1581