首页 | 官方网站   微博 | 高级检索  
     

6个烟草重要产量相关性状的遗传分析
引用本文:童治军,方敦煌,陈学军,曾建敏,焦芳婵,肖炳光.6个烟草重要产量相关性状的遗传分析[J].中国烟草学报,2020,26(5):72-81.
作者姓名:童治军  方敦煌  陈学军  曾建敏  焦芳婵  肖炳光
作者单位:云南省烟草农业科学研究院 / 烟草行业烟草生物技术育种重点实验室 / 国家烟草基因工程研究中心, 云南昆明 650021
基金项目:中国烟草总公司项目110201801029(JY-06)中国烟草总公司项目110201901014(JY-01)中国烟草总公司云南省公司项目2018530000241005中国烟草总公司云南省公司项目2020530000241007
摘    要:  目的  探索和分析烟草重要产量相关性状的遗传规律,为深入研究其遗传机制及烟草新品种选育过程中重要产量相关性状的选择提供依据。  方法  以烤烟Y3(P1)和K326(P2)为亲本配制杂交组合,在2年2点4个环境条件下利用主基因+多基因混合遗传模型方法对该组合各单世代(P1、P2、F7和F8)的株高、叶数、节距、茎围、腰叶长和腰叶宽进行遗传及相关分析。  结果  (1)在4个环境条件下,株高分别与叶数、节距间呈极显著正相关,腰叶长与腰叶宽两者间也呈极显著正相关,而节距与叶数间则呈现极显著负相关,且上述性状间的平均相关系数范围为-0.687~0.832。(2)最优遗传模型对于株高、叶数和节距3个性状均符合2对加性-上位性主基因+加性-上位性多基因混合遗传模型(MX2-AI-AI),其主基因遗传率分别为94.304%、95.632%和91.532%,多基因遗传率分别为3.965%、0和5.489%;腰叶长和腰叶宽2性状均是受2对抑制作用主基因+加性多基因(MX2-IE-A)控制,其主基因遗传率分别为88.383%和90.166%,多基因遗传率分别为7.348%和8.807%;茎围则由3对加性-上位性主基因(3MG-AI)控制,其主基因遗传率为72.051%。  结论  上述性状在多个环境条件下主要受主基因+多基因混合遗传模型控制(除茎围外),主基因遗传率远大于多基因遗传率,受环境影响较小,且以主基因遗传为主。故此,在烟草育种过程中针对产量相关性状的定向选择宜在早期世代进行。 

关 键 词:烟草    重组自交系    产量相关性状    主基因+多基因    遗传分析
收稿时间:2020-05-22

Genetic analysis of six important yield-related traits in tobacco (Nicotiana tabacum L.)
Affiliation:Yunnan Academy of Tobacco Agricultural Sciences / Key Laboratory of Tobacco Biotechnological Breeding / National Tobacco Genetic Engineering Research Center, Kunming 650021, China
Abstract:  Objective  This study analyzes the genetic law of important yield-related traits of tobacco (Nicotiana tabacum L.) in order to provide basis for further study on the genetic mechanism and yield-related traits selection in tobacco breeding.  Methods  A hybrid combination with Y3 and K326 as parents was prepared, and the mixed major gene plus polygene genetic model was applied to analyze the correlation among plant height (PH), leaf number (LN), internode length (IL), stem girth (SG), length of waist leaf (LL) and width of waist leaf (WL). for tobacco in the single generation (P1, P2, F7 and F8) at four environments in two years.  Results  (1) Under all the four environments, PH was extremely significantly positively correlated with LN and IL, respectively; there was an extremely significant correlation between LL and WL as well; while IL had a significant negative correlation with LN. The average correlation coefficient among those traits ranged -0.687 to 0.832. (2) The optimal genetic model for PH, LN and IL was compatible with MX2-AI-AI model characterized by two major genes of additive - epistasis effects plus additive - epistasis polygene. The heritability of major gene was 94.304%, 95.632% and 91.532%, respectively; the heritability of polygene was 3.965%, 0 and 5.489%, respectively. The LL and WL were controlled by 2 pairs of main inhibitory genes + additive polygenes (MX2-IE-A), where the main gene heritability was 88.383% and 90.166%, and the polygene heritability was 7.348% and 8.807%, respectively. The optimal genetic model of SG was an additive - epistasis effects major genes genetic model with a genetic rate of 72.051% for main genes.  Conclusion  These traits are mainly controlled by the combination of major gene plus polygene in multiple environments, and the heritability of the main genes is far greater than that of the polygene i.e. the environment shows very little effect on six yield-related traits. So, in tobacco high-yield breeding, it is desirable to select yield-related traits in early generation tobacco. 
Keywords:
点击此处可从《中国烟草学报》浏览原始摘要信息
点击此处可从《中国烟草学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号