首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Current methods in alleviating the wall deposition problem in spray drying emphasize mainly controlling the stickiness of the drying particles and less attention is placed on the properties of the dryer wall. In this experimental study, the effect of wall surface properties on the deposition mechanism has been investigated. Properties considered in classifying different wall materials were surface energy, roughness, and dielectric properties. The model solution contained sucrose, representing low-molecular-weight sugars commonly encountered in spray drying of fruit and vegetable juices. The effect of wall properties on deposition was explored at different drying rates producing particles of different surface rigidity. Larger surface roughness produced higher deposition fluxes for particles with high impact velocity and moisture. Surface energy and surface roughness were found to have no significant effect for dry rigid particles at the middle and bottom elevation of the drying chamber. However, material with lower surface energy (Teflon) exhibited less deposition for rubbery particles at such elevations. Analysis shows that dielectric wall material (Teflon) tends to enhance deposition of dry particles because of attrition at the surface. Higher wall temperature was found to produce slightly more deposition. The results of this work give a general indication of the effect of wall material on the deposition problem and provide the fundamental understanding for further studies along this line. Proper selection of dryer wall material will provide potential alternatives for reducing the deposition problem.  相似文献   

2.
This short communication reports an optimization approach to effectively determine suitable spray drying operating parameters for a pilot-scale dryer. The proposed optimization approach is essential, as pilot-scale investigations and medium-scale contract productions often involve usage of standard spray dryer units which is not specifically designed for the feed material used. This optimization approach was developed based on past studies on the effect and relationship of the many spray drying operating parameters and highlights two factors which has to be solved (or considered) chronologically: dripping problem, followed by product caking problem. Based on this proposed approach, an algorithm was developed in a case study to optimize an available spray dryer for our future experimental study on wall deposition. In this case, the operating parameters were determined under minimal experimental runs. This proposed optimization approach will be a useful tool for operators and experimenters utilizing spray dryers of similar type, particularly in exploring new feed materials. Depending on the optimization objectives and experimental limitations, different algorithms can be developed. Apart from that, interesting deposition pattern was also observed in the case study. This short communication also reported on the design of an internal rig for further studies on wall deposition.  相似文献   

3.
One of the major problems in spray drying of fruit juices such as lime juice is stickiness and thermoplasticity of their compositions. Lime juice consists of invert sugars and citric acid, which have low glass transition temperatures. Due to this characteristic, the particles stick on the dryer wall upon their collision with it. As a result, drying of these materials is very difficult. In order to solve this problem, various percent of silicon dioxide and maltodextrin (DE5), based on total soluble solid content of lime juice, have been used to reach a suitable drying condition. A cool chamber wall spray dryer was used in this investigation in order to decrease the probability of particles stickiness on the wall. Our investigation revealed that an addition of 10% silicon dioxide and 20% maltodextrin (DE5) to lime juice is the optimum amount for a complete and successful drying of lime juice. Sampling of particles from different longitudinal distances in the dryer tower is carried out to find the particle moisture contents as they fly downward in the dryer. The results show a very fast decrease in entrance moisture contents. Based on our experimental data, the variation of moisture contents are presented as a function of radial distance from central line and longitudinal distance from the entrance region.  相似文献   

4.
This study investigates how the morphology of spray-dried particles is related to the formulation and properties of the components in the formulation. Further, the scale effects in comparisons of levitation-dried single particles and spray-dried particles in a lab-scale spray dryer have been addressed. The Drying Kinetics AnalyzerTM generates single particles from a levitated drop under simulated spray-drying conditions. A set of surface-active polymers (bovine serum albumin, hydroxypropyl methyl cellulose, and triblock co-polymer Poloxamer), in combination with lactose, were analyzed for their dynamic surface properties in solution, and their effect on particle morphology and surface composition were determined by low-vacuum SEM and XPS analyses. The morphology obtained in spray drying was reproduced in the single-particle drying. The surface compositions were also similar, but higher levels of surface-active materials were found at the surface of the single particles as compared to the spray-dried particles. Further, the adsorption rate of surface-active compounds at the drop surface estimated by dynamic surface tension was found to be an important parameter to estimate the surface composition at different drying scales. The particle morphology was primarily determined by the surface rheological properties of the feed solution and, to a lesser extent, by the surface composition.  相似文献   

5.

One of the major problems in spray drying of fruit juices such as lime juice is stickiness and thermoplasticity of their compositions. Lime juice consists of invert sugars and citric acid, which have low glass transition temperatures. Due to this characteristic, the particles stick on the dryer wall upon their collision with it. As a result, drying of these materials is very difficult. In order to solve this problem, various percent of silicon dioxide and maltodextrin (DE5), based on total soluble solid content of lime juice, have been used to reach a suitable drying condition. A cool chamber wall spray dryer was used in this investigation in order to decrease the probability of particles stickiness on the wall. Our investigation revealed that an addition of 10% silicon dioxide and 20% maltodextrin (DE5) to lime juice is the optimum amount for a complete and successful drying of lime juice. Sampling of particles from different longitudinal distances in the dryer tower is carried out to find the particle moisture contents as they fly downward in the dryer. The results show a very fast decrease in entrance moisture contents. Based on our experimental data, the variation of moisture contents are presented as a function of radial distance from central line and longitudinal distance from the entrance region.  相似文献   

6.
The article presents a full set of spray drying experiments for selected products performed in a co-current spray drying tower developed at Lodz Technical University. The experiments enabled identification of process and atomization parameters (feed properties, feed rate and feed temperature, drying agent temperature, air flow rate, atomization ratio, etc.) on drying and degradation kinetics, spray structure, particle residence time, and final product properties. Drying agent temperature measurements showed, in all cases, the initial increase of gas temperature in the spray envelope caused by the spray expansion and then a decrease induced by liquid evaporation and heat losses to the environment. PDA analysis confirmed that the initial velocity of particles was a function of a diameter and also the function of the distance from the axis. Practically an identical particle size distribution was observed in each cross-sectional area of the dryer. Negative values of particle velocity in the vicinity of the axis and at the edge of the spray envelope were found which proved that recirculation of particles appeared in the column. Analysis of final product properties showed that for agglomerate-like materials a decrease of bulk density with an increase of air temperature was related to morphological changes that occurred during drying and affected the shape of particles, surface structure, etc. The experiments proved that air/liquid ratio for two-fluid atomization and gas temperature were the most decisive factors controlling drying and degradation process rate and final product properties.  相似文献   

7.
Physical characterization and oxidative stability of egg powder microencapsulated by spray drying were studied in this work. The wall material (gelatin, lactose, pullulan, and their mixtures) and liquid egg mixtures were prepared by homogenization at 22,000 rpm for 60 s. The spray drying was carried out at pilot-scale spray dryer (Niro Mobile Minor, Søborg, Denmark). The spray-dried egg powders were analyzed for moisture content, water activity, peroxide value, total cholesterol oxidation products (TCOPs), particle properties, and bulk properties. Using gelatin as wall material resulted in a significant increase in the moisture content and water activity of egg powder during storage and it improved flowability. Egg powders containing pullulan as wall material showed a fibrous structure and had the lowest bulk density. Adding lactose as wall material increased the oxidative stability, which was indicated with lowest peroxide value and TCOPs level of egg powder.  相似文献   

8.
《Drying Technology》2013,31(6):1325-1349
Abstract

The article presents a full set of spray drying experiments for selected products performed in a co-current spray drying tower developed at Lodz Technical University. The experiments enabled identification of process and atomization parameters (feed properties, feed rate and feed temperature, drying agent temperature, air flow rate, atomization ratio, etc.) on drying and degradation kinetics, spray structure, particle residence time, and final product properties. Drying agent temperature measurements showed, in all cases, the initial increase of gas temperature in the spray envelope caused by the spray expansion and then a decrease induced by liquid evaporation and heat losses to the environment. PDA analysis confirmed that the initial velocity of particles was a function of a diameter and also the function of the distance from the axis. Practically an identical particle size distribution was observed in each cross-sectional area of the dryer. Negative values of particle velocity in the vicinity of the axis and at the edge of the spray envelope were found which proved that recirculation of particles appeared in the column. Analysis of final product properties showed that for agglomerate-like materials a decrease of bulk density with an increase of air temperature was related to morphological changes that occurred during drying and affected the shape of particles, surface structure, etc. The experiments proved that air/liquid ratio for two-fluid atomization and gas temperature were the most decisive factors controlling drying and degradation process rate and final product properties.  相似文献   

9.
Spray drying is used extensively in the food and food-related industries for the manufacture of a wide range of products in dry particulate form both as powders and agglomerates. Spray drying produces these products by atomizing a liquid formulation within a suspended particle drying system. Therefore, the spray-drying process features moist particles existing both in an airborne state and as a semi-dried product present at the walls of the drying chamber, ducts, and associated powder handling components. The presence of any partially dried product within the warm components of the drying system over an extended period of time can result in microbial growth. This presents a possible hygienic risk in such cases where products are sensitive to this form of contamination. With the increasing use of spray drying in the above-mentioned industries, there is greater focus on hygienic spray dryer design and the operating considerations that need to be taken into account, so that hygienic processing can be economically achieved. This is irrespective of whether a hygienic evaluation involves an existing spray dryer or the engineering phase of a new plant.

This article addresses industrial personnel associated with a hygienic manufacturing operation involving spray drying and offers guidelines for assessing whether an existing or planned new spray dryer meets hygienic engineering/design criteria for economic operation without risks of powder quality degradation through contamination.  相似文献   

10.
Yan Jin 《Drying Technology》2013,31(3):371-381
Development of high-performance spray dryers that are more energy efficient and are able to produce high-quality milk powders is very important for the future of the dairy powder industry. Understanding and optimization of the exiting dryers are also of great value. Computational fluid dynamics is a powerful tool to simulate and help understanding the characteristics of spray drying and to introduce potentially improved designs. The present study has concentrated on the multiphase flow in an industrial-scale spray dryer using the CFD package FLUENT. A Eulerian-Lagrangian approach is used in the simulations. A new drying model, REA model, for milk particles has been implemented for the first time in a CFD application. The numerical results match well with the plant data. It is argued that the “reflecting wall” boundary condition produced more physically correct results for normal dryer operation than the “escaping wall” boundary condition. The second one is an oversimplification. The influences of the particle size and particle size distribution, residence time, kinetic energy, and maximum temperature have been analyzed. The initial droplet size range was set to be from 100 to 500 µm with Rosin-Rammler distribution function. One significant result of this study is that rather dense particle clouds of medium-size particles (224–285 µm) are found near the side walls. They are transported upwards along the side wall (conical wall surface) and then are dispersed. It is found the particles with initial diameters of between 225 and 270 µm have the largest residence times.  相似文献   

11.
Spray drying is used extensively in the food and food-related industries for the manufacture of a wide range of products in dry particulate form both as powders and agglomerates. Spray drying produces these products by atomizing a liquid formulation within a suspended particle drying system. Therefore, the spray-drying process features moist particles existing both in an airborne state and as a semi-dried product present at the walls of the drying chamber, ducts, and associated powder handling components. The presence of any partially dried product within the warm components of the drying system over an extended period of time can result in microbial growth. This presents a possible hygienic risk in such cases where products are sensitive to this form of contamination. With the increasing use of spray drying in the above-mentioned industries, there is greater focus on hygienic spray dryer design and the operating considerations that need to be taken into account, so that hygienic processing can be economically achieved. This is irrespective of whether a hygienic evaluation involves an existing spray dryer or the engineering phase of a new plant.

This article addresses industrial personnel associated with a hygienic manufacturing operation involving spray drying and offers guidelines for assessing whether an existing or planned new spray dryer meets hygienic engineering/design criteria for economic operation without risks of powder quality degradation through contamination.  相似文献   

12.
A spray dryer is the ideal equipment for the production of food powders because it can easily impart well-defined end product characteristics such as moisture content, particle size, porosity, and bulk density. Wall deposition of particles in spray dryers is a key processing problem and an understanding of wall deposition can guide the selection of operating conditions to minimize this problem. The stickiness of powders causes the deposition of particles on the wall. Operating parameters such as inlet air temperature and feed flow rate affect the air temperature and humidity inside the dryer, which together with the addition of drying aids can affect the stickiness and moisture content of the product and hence its deposition on the wall. In this article, an artificial neural network (ANN) method was used to model the effects of inlet air temperature, feed flow rate, and maltodextrin ratio on wall deposition flux and moisture content of lactose-rich products. An ANN trained by back-propagation algorithms was developed to predict two performance indices based on the three input variables. The results showed good agreement between predicted results using the ANN and the measured data taken under the same conditions. The optimum condition found by the ANN for minimum moisture content and minimum wall deposition rate for lactose-rich feed was inlet air temperature of 140°C, feed rate of 23 mL/min, and maltodextrin ratio of 45%. The ANN technology has been shown to be an excellent investigative and predictive tool for spray drying of lactose-rich products.  相似文献   

13.
A control volume-based technique implemented in FLUENT (ANSYS Inc., Canonsburg, PA) computational fluid dynamics (CFD) package was applied along with the kinetic theory of granular flow (KTGF) to simulate the flow pattern and heat and mass transfer processes for sludge material in a large-scale cyclone dryer. The drying characteristics of sludge at the dryer inlet were obtained from a previous study on the drying of sludge in a large-scale pneumatic dryer. User-defined subroutines were added to extend FLUENT's capability to account for mixture properties and to simulate the constant and falling rate drying periods. The convective heat and mass transfer coefficients were modeled using published correlations for Nusselt and Sherwood numbers. Sensitivity analysis was conducted to determine the effect of gas-phase velocity and temperature on the final product outcome. Numerical predictions for the multiphase flow hydrodynamics showed a highly diluted region in the dryer core and a higher concentration of particles close to the wall region, an indication of nonuniform distribution of particles at a cross-sectional area. The numerical predictions for the hydrodynamic profiles qualitatively depicted the flow behavior natural to these designs. The work demonstrated the successful application of CFD in the design stage of a combined pneumatic-cyclone dryer model.  相似文献   

14.
Wall deposition is one of the most conventional problems in the spray drying process. The operation of a spray dryer is affected by the wall deposition fluxes inside the equipment. In this study, computational fluid dynamic (CFD) simulation was used to investigate the effect of spray dryer geometry on wall deposition. A CFD model was developed for different geometries of spray dryer with a conical (case A) or a parabolic (cases B and C) bottom. The results implied that the parabolic geometry resulted in a lower deposition rate on the spray dryer walls. A comparison of results using the P-values (F-test) of the air velocity, in the conical and parabolic geometries, showed that there was a significant difference in air stability between them. The flow field in conical geometry case A was significantly more unstable, and parabolic geometry case C produced the most uniform airflow patterns. Moreover, the higher wall shear stress in case C, with lower values of the vorticity, would result in less wall deposition.  相似文献   

15.
Combined crystallization and drying of lactose solutions was performed in a pilot-scale spray dryer over a wide range of operating conditions. The effect of different parameters, including temperature, moisture content, atomizing air flow rate, liquid feed rate, main drying air flow rate, and particle size, on the degree of crystallinity of the spray-dried powders was analyzed. Water-induced crystallization (WIC) and modulated differential scanning calorimetry (MDSC) were used to assess the effect of these parameters on the degree of crystallinity of the spray-dried powders. The particles were characterized in terms of the final moisture content using WIC and distinctive differences in the peak heights, which are indicative of the particle crystallinity, were found for spray-dried particles using different drying conditions, supporting the results from MDSC. MDSC showed that decreasing the inlet air temperature by 40°C increased the degree of crystallinity in the particles threefold from 22 to 72%. A decrease in the inlet air temperature may decrease the particle temperature, resulting in wetter particles, and a lower temperature meant a longer particle drying time and allowed the particles to rearrange themselves into a more crystalline form. Up to 72% crystallinity is achievable in a pilot-scale spray dryer by suitable adjustment of the operating conditions. The results suggest differences in the rate of crystallization and particle size between small and pilot-scale spray dryers.  相似文献   

16.
Spray drying consists in atomizing a solution into liquid drops in a hot air flow to get dry solid particles after solvent evaporation. The convective drying at the drop surface leads to a very fast evolution of temperature and water content due to initial high differences of temperature and water vapour pressure between the drop surface and the drying air. During drying, the drop surface viscosity is increasing due to potentially amorphous polymers reaching a rubbery state. The drop surface is becoming sticky with consequences on wall deposit. This sticky behaviour which appears in the range of 10 to 30 °C above the glass transition temperature Tg, may be utilized in a positive way for agglomeration of drying particles with dry powders, either recycled fines or new dry powder, to improve instant properties.The evolution of water content of drops along drying, is deduced from measurements of air temperature and relative humidity, at different places in the dryer and used to predict the drying and sticky behaviour of two maltodextrin solutions (DE12 and DE21) with different Tg. The studied parameters in a co-current spray dryer were the inlet air temperature (144, 174, 200 °C) and flow rate (80 and 110 kg h− 1), the liquid flow rate (1.8, 3.6 and 5.4 kg h− 1) and the rotation speed of the wheel atomizer. The results on particle water content combined with the evolution of Tg showed that particles are sticky close to the atomiser for the two maltodextrins, and also along the chamber for maltodextrin DE21 due to its lower Tg. The introduction of dry particles at different places in the chamber allowed validating the method to control agglomeration.  相似文献   

17.
The effect of feed concentration on spray drying of tomato pulp preconcentrated to 78, 82, and 86% wet basis is investigated in two spray drying systems: a pilot scale spray dryer (Buchi, B-191) with cocurrent regime and a two-fluid nozzle atomizer, and the same connected with an absorption air dryer (Ultrapac 2000). Data for the residue on the chamber and cyclone walls were gathered and two types of efficiencies were calculated as an indication of the spray dryer performance. Tomato powders were analyzed for moisture, particle size, and bulk density. In both spray drying systems, with increases in tomato pulp concentration overall thermal efficiency, evaporative efficiency, material loss in the cyclone, powder moisture content, and bulk density decreased, whereas powder particle size increased. On the contrary, the effect of feed solids content on residue formation and product recovery was dependent on the drying medium. In the standard dryer, the higher the feed concentration, the higher was the residue accumulation, and the lower the product recovery, whereas in the modified system increases in pulp concentration resulted in lower residue formations and higher product yields.  相似文献   

18.
Spray drying is an important continuous industrial process for drying pumpable liquid formulations irrespective of their heat sensitivity, rheology, solids content and processing rate. Furthermore spray drying has the capability through drying chamber design, plant layout and mode of operation to produce dried products of specific particulate size and morphology. These are important aspects when spray drying technology is applied to the needs of customized powder manufacture. There are many examples in industry where spray dried powders have to meet stringent specifications set by such factors as end-product powder quality standards dictated by global competition,dry raw material characteristics required for optimum downstream processing, and dry materials handling to comply with environmental, health and safety issues. Spray drying is no longer regarded just as a convective industrial drying concept, but also as an integral part of modern manufacturing practices applying powder technology. This paper reviews the aspects of spray dryer design and operation for consideration when customized powder manufacture is involved.  相似文献   

19.
Spray drying is an important continuous industrial process for drying pumpable liquid formulations irrespective of their heat sensitivity, rheology, solids content and processing rate. Furthermore spray drying has the capability through drying chamber design, plant layout and mode of operation to produce dried products of specific particulate size and morphology. These are important aspects when spray drying technology is applied to the needs of customized powder manufacture. There are many examples in industry where spray dried powders have to meet stringent specifications set by such factors as end-product powder quality standards dictated by global competition, dry raw material characteristics required for optimum downstream processing, and dry materials handling to comply with environmental, health and safety issues. Spray drying is no longer regarded just as a convective industrial drying concept, but also as an integral part of modern manufacturing practices applying powder technology. This paper r  相似文献   

20.
The objective of this work was to evaluate the effect of the type of wall material and the oil load on the microencapsulation of flaxseed oil by spray drying. Gum arabic, whey protein concentrate, and a modified starch were used to produce the microcapsules, each with four oil concentrations (10, 20, 30, and 40% oil, w/w, with respect to total solids), for a total of 12 tests. Initially, the feed emulsions were characterized for stability, viscosity, and droplet size. Then they were dried in a laboratory-scale spray dryer and the resulting particles were analyzed for encapsulation efficiency, lipid oxidation, moisture content, and bulk density. The increase in oil concentration led to the production of emulsions with larger droplets and lower viscosity, which directly affected powder properties, resulting in lower encapsulation efficiency and higher lipid oxidation. Among the three wall materials evaluated, the modified starch showed the best performance, with the highest encapsulation efficiency and lowest peroxide values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号