首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 130 毫秒
1.
在乙烯裂解工业装置的典型操作条件下,分别选取正构烷烃、异构烷烃、环烷烃、芳烃为裂解原料,考察了这些模型化合物的蒸汽裂解产物分布情况。结果表明,正构烷烃是优质的乙烯裂解原料,乙烯收率为36%~45%;异构烷烃的丙烯收率约为23%,明显高于正构烷烃;环烷烃裂解乙烯和丙烯收率较低,丁二烯收率则较高,为14%~15%;芳烃很难裂解生成烯烃。建立了包含2个隐层的级联前向BP神经网络,以模型化合物和石脑油样本裂解烯烃收率为依据对该神经网络进行训练,确定了模型参数,并对2种石脑油的裂解烯烃收率仿真数据与实验结果进行了对比。结果表明,二者的误差小于1个百分点,该模型可用于预测石脑油裂解的烯烃收率。  相似文献   

2.
在5A分子筛吸附分离石脑油中正构烷烃的基础上,采用固定床吸附器对比考察了13X分子筛对石脑油及其脱正构油中芳烃的吸附分离性能。实验结果表明,13X分子筛吸附分离石脑油中芳烃的优化工艺条件为:吸附温度290℃,进料气态空速75 h~(-1),吸附时间30 min,N_2脱附气态空速150 h~(-1)时的适宜脱附时间为75 min;石脑油经5A分子筛和13X分子筛吸附分离后,正构烷烃和芳烃含量(w)分别由31.9%和12.8%降低到0.4%和1.7%,异构烷烃和环烷烃含量(w)分别由34.7%和20.6%增加到62.1%和35.8%;5A分子筛脱附油中正构烷烃含量达到94.8%(w),可作为优质的裂解制乙烯原料;13X分子筛脱附油中芳烃含量为85.1%(w),可直接作为芳烃抽提的原料。  相似文献   

3.
为了提高石脑油生产乙烯和芳烃的利用效率,采用5A分子筛和ZSM-5分子筛对石脑油进行连续吸附分离研究,分别得到脱正构烷烃吸余油(简称脱正构油)和脱单甲基异构吸余油(简称脱烷烃油);采用氮气对分子筛进行脱附得到富含烷烃组分油(简称脱附油)。试验结果表明:脱烷烃油中正构烷烃质量分数为0.1%,单甲基异构烷烃质量分数为3.8%,芳烃潜含量为53.4%,可作为优质的催化重整原料;脱附油的烷烃质量分数可达到84%以上,可作为裂解制乙烯的优质原料。  相似文献   

4.
为了提高石脑油生产乙烯和芳烃的利用效率,采用5A分子筛和ZSM-5分子筛对石脑油进行连续吸附分离研究,分别得到脱正构烷烃吸余油(简称脱正构油)和脱单甲基异构吸余油(简称脱烷烃油);采用氮气对分子筛进行脱附得到富含烷烃组分油(简称脱附油)。试验结果表明:脱烷烃油中正构烷烃质量分数为0.1%,单甲基异构烷烃质量分数为3.8%,芳烃潜含量为53.4%,可作为优质的催化重整原料;脱附油的烷烃质量分数可达到84%以上,可作为裂解制乙烯的优质原料。  相似文献   

5.
中国石化扬子石油化工有限公司1.2 Mt/a石脑油吸附分离装置于2013年1月23日一次开车成功。装置采用模拟移动床吸附分离技术,将石脑油中的正异构烷烃分离,正构烷烃用作蒸汽裂解原料,非正构烷烃用作催化重整原料。装置标定结果表明,以正构烷烃质量分数为26.25%的石脑油为吸附分离装置原料,抽出液产品正构烷烃质量分数达到94.83%,正构烷烃吸附收率达到87.02%。相比以石脑油作原料,抽出液作蒸汽裂解原料时乙烯收率提高14.10百分点,抽余液作重整装置原料时芳烃潜含量提升11.20百分点。对装置出现的抽余液塔周期性波动、解吸剂消耗量高和抽出液塔液泛等问题进行了原因分析,并提出了解决措施  相似文献   

6.
在固定床单柱吸附分离研究的基础上,通过程序控制的5A分子筛固定床双塔并联吸附分离试验装置,对中国石化上海高桥分公司石脑油中正构烷烃吸附/脱附分离过程进行连续操作,考察了多周期运转的吸附分离效果,并对工艺条件进行考察。研究结果表明,吸余油中正构烷烃含量经过5个吸附/脱附周期后趋于稳定,优化的吸附分离操作条件为:石脑油原料体积空速153.4 h-1,吸附/脱附温度270 ℃,吸附/脱附切换时间30 min,脱附气体体积空速127.5 h-1,中间油切割时间2 min。在该工艺条件下,稳定操作的吸余油中正构烷烃质量分数小于3%,芳烃潜含量比石脑油提高12.31百分点;脱附油中正构烷烃质量分数大于95%,作蒸汽裂解制乙烯原料时,与石脑油相比,乙烯收率提高约14百分点。  相似文献   

7.
作为生产芳烃和烯烃产品的重要原料,石脑油馏分的综合利用是优化炼化一体化加工方案的重中之重。通过分析石脑油的族组成及轻、重石脑油的组成变化对芳烃和烯烃生产的影响,优化石脑油的加工方案,为进一步提高石脑油资源综合利用水平提供思路。用关键组分来控制分离精度,代替传统的馏程控制,将石脑油进行烷烃正构、异构分离,特别是将轻石脑油进行烷烃正构、异构分离,正构轻石脑油送至乙烯装置作原料对乙烯及总烯烃收率的提高更为有利。调整重整装置的进料组成,提高芳烃收率,实现增产芳烃产品的目的。上述措施对优化炼化一体化原油加工方案、提高石脑油资源综合利用更为有效。  相似文献   

8.
为提高轻石脑油的利用价值,实现“宜油则油,宜烯则烯”的原料优化目的,通过正异构烷烃分离使不同组分物尽其用,富含异构烷烃的轻石脑油辛烷值高,用作汽油调合组分以提升全厂汽油池辛烷值及改善辛烷值分布,富含正构烷烃的轻石脑油用作蒸汽裂解原料提高乙烯收率。在企业汽油池辛烷值不足的情况下,实施轻石脑油正异构烷烃吸附分离项目可以提高全厂汽油池辛烷值以及增加高标号汽油产量,同时也可以增加蒸汽裂解装置的乙烯收率。以某企业为例的测算结果表明,轻石脑油正异构烷烃吸附分离方案实施后对企业的经济效益有很大提升,按2019年布伦特原油60美元/bbl(1 bbl=159 L)价格体系测算,汽油和烯烃产品收入可增加73 964万元/a,扣除燃料动力费用和辅助材料费用增加的7 674万元/a,项目净收益为66 290万元/a。  相似文献   

9.
研究了直馏石脑油、加氢焦化石脑油和天然气凝析油三种裂解制乙烯原料及其通过分子筛吸附分离后相应的富含正构烷烃脱附油的裂解乙烯收率,并考察了裂解反应条件对不同裂解原料的裂解性能的影响。在工业装置典型操作条件下,直馏石脑油及其吸附分离吸余油和脱附油的乙烯收率分别为29.9%,23.0%,41.1%,脱附油的乙烯收率比直馏石脑油增加11.2个百分点,脱附油的三烯总收率比石脑油增加8.6个百分点;对于加氢焦化石脑油和凝析油,其相应脱附油的裂解乙烯收率分别提高11.1和6.5个百分点。石脑油和脱附油裂解乙烯收率和丁二烯收率均随裂解出口温度的升高而增加,丙烯收率基本不随裂解出口温度的变化而改变。  相似文献   

10.
直馏石脑油主要由正构烷烃、异构烷烃、环烷烃和芳香烃构成,其中正构烷烃是理想的乙烯裂解原料;异构烷烃是理想的清洁汽油调和组分;环烷烃和芳香烃是理想的催化重整原料。根据不同用途对石脑油烃族组成的需求,结合石脑油分离技术的发展现状,以及国内石脑油的性质和利用现状,分析了从石脑油中分离出正构烷烃的技术在国内的应用前景。通过对石脑油中的正构烷烃与非正构烷烃分离,把正构烷烃作为乙烯裂解原料,非正构烷烃作为重整原料,可大幅提高石脑油利用价值,以实现乙烯原料和重整原料的双目标优化,将进一步提升炼油化工一体化企业的整体竞争力。  相似文献   

11.
In order to improve the steam cracking feeds, several model compounds including normal paraffins, iso-paraffins, cyclanes and aromatics were selected as the feeds of steam cracking process and the olefin yields were investigated. In the typical reaction conditions, the normal paraffins in the naphtha contribute most to the ethylene in the products; the iso-paraffins are the main sources of the propylene; the cyclanes mainly produce the butadiene and the aromatics can hardly produce olefins. According to this, the adsorption process and solvent extraction process were adopted to separate the group compositions in naphtha properly to optimize the cracking feeds. The n-paraffins in naphtha were gathered through adsorption process using 5A molecular sieves. The ethylene yield improved by 13% using the desorption oil rich in n-paraffins as the cracking feed. The aromatics and the cyclanes were extracted from the naphtha. Compared with the naphtha, the ethylene and propylene yields of the extraction raffinate oil were 3.0 and 1.5% higher respectively.  相似文献   

12.
By means of molecular scale management, the technology of separating normal paraffins from naphtha through adsorption using 5A molecular sieves was studied with the purpose of optimizing the utilization of naphtha. The raw materials used in steam cracking and catalytic reforming processes could be allocated properly. During the adsorption process, the separation efficiency of the normal paraffins was above 99.9% with the purity of normal paraffins in the desorption oil exceeding 98.2%. With the use of the desorption oil as the feedstock of steam cracking, the ethylene yield increased from 29.7%--35.0% to 41.4%-49.2% compared to that of the naphtha in the existing plant under similar operation conditions. The potential aromatic content of the raffinate oil rose from 30.6% to 43.5% compared to that in naphtha. The research octane number of the raffinate oil reached more than 85 with an increase of 20 units compared to that of naphtha, so the raffinate oil is more suitable for use as a blending component for high-octane clean gasoline.  相似文献   

13.
The technology of separating normal paraffins from naphtha through adsorption using 5A molecular sieves was studied. The separation efficiency of the normal paraffins was above 99.99%. Using the desorption oil as the feedstock of steam cracking, the ethylene yield increased from 29.7-35.0% to 41.4-49.2% compared to that of the naphtha. The research octane number of the raffinate oil reached more than 85 units with an increase of 20 units compared to that of naphtha.  相似文献   

14.
Abstract

The technology of separating normal paraffins from naphtha through adsorption using 5A molecular sieves was studied. The separation efficiency of the normal paraffins was above 99.99%. Using the desorption oil as the feedstock of steam cracking, the ethylene yield increased from 29.7–35.0% to 41.4–49.2% compared to that of the naphtha. The research octane number of the raffinate oil reached more than 85 units with an increase of 20 units compared to that of naphtha.  相似文献   

15.
基于分子管理的理念,以5A分子筛为吸附剂,分离石脑油中的正构烷烃和非正构烃。考察了模拟移动床(SMB)中分子筛对正构烷烃的吸附分离规律以及循环比、分配比、脱附剂比等因素对分离效果的影响。在操作压力2.0 MPa、操作温度170 ℃、石脑油质量空速0.024 h-1、切换时间900 s的条件下,优化的模拟移动床操作条件为:循环比2.25、分配比3.00、脱附剂比4。对于正构烷烃质量分数为31.95%的石脑油,经SMB液相吸附分离后,脱附油中正构烷烃质量分数达到87.76%,吸余油中非正构烃质量分数达到97.83%。与石脑油原料相比,以脱附油作为裂解原料时的乙烯收率提高13.1百分点;吸余油研究法辛烷值提高19.2个单位,芳烃潜含量提高10.2百分点。  相似文献   

16.
In this paper, the separation of aromatics from light naphtha by using extraction process was investigated for improving the utilization efficiency of naphtha. It is indicated that, using a mixture of propylene carbonate-diethylene glycol as the solvent, the optimal extraction conditions cover: a volume fraction of propylene carbonate in the mixed solvent of 0.3, a solvent to feed ratio of 8, and an extraction temperature of 308 K. Through the extraction process, the aromatics mass fraction increases from 10.05% in naphtha to 27.74% in extract oil. It is found that the aromatics yield of extract oil, R_A, reaches 92.11%. As a result, in comparison with naphtha, the potential aromatics content of extract oil increases impressively by 18.03%. Meanwhile, the aromatics content of raffinate oil decreases to 1.33%, and the normal paraffin yield of raffinate oil, Rp, is 76.61%. Accordingly, higher total olefins yields can be obtained when using raffinate oil as the raw material for steam cracking. The present results show that the utilization efficiency of naphtha is improved through extraction process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号