首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
BP神经网络补偿热变形误差的研究   总被引:7,自引:0,他引:7  
在精密加工中,由于热变形引起的误差占整个系统误差的40%-60%[1] ,这说明对热变形进行深入研究和找出其规律并提出相应的补偿措施是十分必要的。本文是以CK616-1简易数控车床为实验对象,在对其热误差分析的基础上进行热误差建模,并结合改进的BP神经网络给出了具体实现的方法,对提高机床的加工精度有着极其重要的意义。  相似文献   

2.
热误差是影响高精度数控机床加工精度的主要的误差因素.文章主要论述了利用BP神经网络来建立CX8075车铣复合加工中心电主轴热误差补偿模型的建模的过程,以两组不同的数据,分别进行的训练和预测,经过在软件MATLAB中的模拟测试,通过BP神经网络建立的电主轴热误差补偿模型具备了较高的拟合和预测精度.分析结果表明,电主轴的原始热误差值与模型计算的输出结果的值非常接近,最低补偿率可达90%以上,这代表运用该BP神经网络模型能够补偿大部分的热变形误差.  相似文献   

3.
为了提高数控机床热误差模型的预测精度,以某型号立式加工中心为实验对象,采用模糊聚类与灰色综合关联度相结合的方法对机床测温点进行优化,将测温点从8个减少到3个。利用遗传算法(GA)优化的Elman神经网络建立了主轴热漂移误差预测模型,通过实例比较了GA-Elman神经网络模型与普通Elman神经网络模型的预测效果。结果表明,与普通Elman神经网络所建的预测模型相比,GA-Elman神经网络模型对主轴轴向热漂移误差的预测精度较高,残差较小,网络的泛化能力较好。  相似文献   

4.
机床热误差温度测点优化和补偿建模研究现状   总被引:1,自引:0,他引:1  
机床热误差是影响机床加工精度稳定性的最大误差源,因此减小热误差对提高机床的加工精度至关重要。本文综述了关于机床温度测点位置优化方法和热误差补偿建模的方法,并对几种方法进行了比较,阐述了各方法的优缺点最后给出了运用其它方法来解决此类问题的思路。  相似文献   

5.
为解决某加工中心电主轴的热误差补偿问题,建立预测精度高、鲁棒性强的热误差补偿模型。搭建实验台,利用美国雄狮回转误差分析仪采集电主轴的温度场和热误差数据。介绍麻雀搜索算法(SSA)原理、具体优化流程。采用SSA优化BP神经网络的权值和阈值,建立SSA-BP神经网络预测模型。与之前建立的BP神经网络预测模型相比,优化后预测效果更优,为电主轴热误差建模提供新的思路。  相似文献   

6.
针对当前数控机床热变形误差实施补偿存在的预测值滞后实际补偿值问题,提出基于长短期记忆(LSTM)神经网络算法热误差超前预测解决方案,详细探讨LSTM神经网络算法的解析流程,建立基于LSTM神经网络算法热误差超前预测模型,并进行关键温测点及热变形误差超前预测实验。实验结果表明:热变形误差实际值与预测值的最大残差、平均值和均方差均在可控范围内,超前预测的准确度为86.3%,进一步论证了机床热变形误差超前预测的有效性。  相似文献   

7.
为了降低机床主轴运行产生的热误差,建立混合算法优化BP神经网络预测模型,通过实验验证预测精度。分析模拟退火算法和粒子群算法的不足,采用模拟退火算法耦合粒子群算法,给出混合算法寻优步骤。引用BP神经网络结构,构造机床主轴热误差预测模型,采用混合算法优化BP神经网络预测模型。采用实验验证主轴热误差预测精度,并与优化前进行比较和分析。结果显示:采用混合算法优化后的BP神经网络预测模型,其Y轴方向产生的最大误差值从7.3μm降低到2.3μm;而Z轴方向产生的最大误差值从7.5μm降低到2.6μm。同时,机床主轴整体误差波动幅度较小。采用混合算法优化BP神经网络预测模型,用于机床主轴热误差在线补偿,提高了加工精度。  相似文献   

8.
在精密及超精密加工过程中,数控机床热误差是影响加工精度的一项重要误差源,最经济和有效地减少热误差的方法是热误差补偿技术。针对热误差补偿预测模型的预测精度问题,提出一种非线性组合预测模型。该预测模型利用灰色关联度方法对单项预测模型进行筛选,对筛选出的单项预测模型基于不同优化准则进行线性组合,通过广义回归神经网络对该线性组合模型进行非线性组合,得到非线性组合预测模型。误差预测结果表明:对比典型的BP神经网络预测模型,非线性组合预测模型的预测精度更高,最大误差由4.78μm减小到0.7μm。  相似文献   

9.
由于BP存在网络结构选取基于经验、易陷入局部最优、收敛速度慢等缺陷,致使基于BP的数控机床热误差预测模型精度不高,对此提出了一种改进粒子群优化BP的数控机床热误差预测建模的新方法。通过改进标准粒子群算法中粒子的位置与速度更新策略,以此寻找BP神经网络最优的阈值和权值,在此基础上建立数控机床热误差预测模型。仿真实验结果表明:与标准的BP神经网络和支持向量机相比,改进粒子群优化BP神经网络的数控机床热误差预测模型精度更高、泛化能力更强。  相似文献   

10.
热误差是影响数控机床加工精度的主因,为提高数控机床热误差模型的预测精度,提出了基于改进粒子群优化BP神经网络的数控机床热误差建模预测方法。针对BP易陷入局部最优、收敛速度慢,在标准粒子群算法的基础上,改进粒子的速度与位置更新策略,在此基础上优化BP神经网络的阈值和权值,并建立数控机床热误差预测模型;借助于MATLAB完成仿真实验,结果表明,与标准的BP神经网络和支持向量机相比,基于改进粒子群优化BP神经网络的数控机床热误差预测模型精度高、泛化能力强。  相似文献   

11.
热误差作为制约数控机床加工精度的关键因素,在重型数控机床上表现得尤为明显。以重型落地镗铣床为例,根据热误差测量试验数据,分析重型数控机床温度场特性,并基于兼顾相关系数和欧式距离的系统聚类准则,对温度测点系统进行优化,以减小温度测点间共线性。通过优化温度测点,采用多元线性回归分析,建立重型数控机床热误差预测模型。由现场试验可知,建立的热误差预测模型可将均方根误差控制在10μm以内,有效地提高了热误差预测精度。  相似文献   

12.
数控机床热变形误差补偿技术   总被引:1,自引:0,他引:1  
热变形误差是影响机床加工精度的重要因素之一,通过实时热变形误差补偿可以提高数控机床加工精度.本文在分析产生机床热误差的原理的基础上, 探讨了热误差的测量方法,利用多元线性回归方法建立了机床热变形与温升之间的数学模型.应用数控系统的PLC补偿功能,对XH178加工中心加工过程中的热误差进行了实时补偿.实验结果表明误差补偿量达到80%以上.  相似文献   

13.
为降低热误差对加工精度的影响,以减少补偿成本、简化数据采集、提高补偿精度为目标,提出采用灰色GM(0,N)模型进行数控机床热误差建模预测;以优化数据配置、改善补偿系统动态品质、提高鲁棒性为目的,建立了GM(0,N)优化模型。采用智能温度传感器和位移传感器采集了MCH63精密卧式加工中心温度数据和主轴3个方向热位移量,并根据采集数据构建热误差模型。试验结果表明:GM(0,N)建模方法简单,数据量少,运算时间短,预测精度较高;优化模型可根据在线输入的新数据不断修正模型本身,其精度高、鲁棒性强、通用性好,适合于在线建模。  相似文献   

14.
本文阐述了数控机床热误差补偿技术的基本概念,提出了一种基于无限冲激响应(IIR)网络的数控机床热误差预报模型,讨论了该模型的建立及相关技术问题,对智能预报补偿系统进行了研究,并给出了智能预报的结果和精度评价。  相似文献   

15.
为提高机床加工精度,研究并选择最佳模型对立式加工中心主轴热误差进行补偿。以KVC650E立式加工中心为实验对象,根据秋季数据对主轴热误差建立了多元线性回归、神经网络和支持向量机模型;将同一台机床和另一台同类型机床所测得的冬季数据分别代入3种模型计算各模型补偿精度;根据3种模型的精度变化规律比较三者的精确性、鲁棒性和通用性。实验结果表明:3种模型都有各自的优势,但支持向量机模型能在不同的环境温度和机床条件下保证较高的精度,综合性能最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号