首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了预防薄煤层掘进工作面在原始应力区掘进时发生瓦斯超限和瓦斯积聚的现象,以及煤层受邻近层瓦斯压力的影响发生煤与瓦斯的突出事故,通过结合现场实际,采用合理调配风量、预抽煤层瓦斯、超前预测和掘进期间执行循环前探钻孔卸压等瓦斯综合治理方案,达到了工作面瓦斯治理的预期效果,从而保证了薄煤层掘进工作面在原始应力区的施工安全。  相似文献   

2.
《工矿自动化》2016,(2):22-26
通过收集分析贵州矿区381对矿井、695层煤的突出指标和以往120对矿井发生的214起典型煤与瓦斯突出事故,对贵州矿区煤与瓦斯突出指标分布特点及突出特征进行了研究,提出了针对性的防突措施:加大煤层突出指标的测试工作,对黔北、织纳、六枝、盘江、水城等突出强度大和突出次数多的矿区制定严格的管理制度,加大煤巷掘进工作面的防突工作,并加强放炮管理、动力现象监测和地质构造探测,以此减少贵州矿区煤与瓦斯突出事故。  相似文献   

3.
针对目前高瓦斯煤巷长距离掘进工作面瓦斯治理措施存在成本高、因回风流瓦斯体积分数高而影响掘进速度等问题,提出在长距离掘进工作面应用短钻孔快速抽采工艺,即利用检修班时间采用短钻孔进行掘进工作面快速集中抽采,通过短时间、高强度抽采小范围瓦斯,减小掘进工作面及回风流通风压力,提高煤巷掘进速度。短钻孔快速抽采工艺从时间和空间上克服了现有技术的不足,将掘进工作面长距离长时间瓦斯抽采变为短距离短时间的高效抽采。在山西霍尔辛赫煤矿3605回风巷的应用结果表明,应用短钻孔快速抽采工艺可在控制回风流与工作面瓦斯体积分数和成本的前提下,将煤巷掘进月累计进尺由170 m提高到250 m,提高了近50%,实现了对低透气性煤层长距离掘进工作面瓦斯的有效治理。  相似文献   

4.
相对于单一煤层或其他煤层群开采,近距离煤层群在开采过程中邻近层受到开采层应力影响更为剧烈,瓦斯更容易通过发育的裂隙涌入开采层,造成开采层工作面瓦斯积聚。现有的针对近距离煤层群的瓦斯治理研究主要侧重于单一措施参数的确定及效果分析,没有深入研究瓦斯治理措施在时间、空间层面之间的联系,对综合瓦斯治理措施的优选组合、具体参数的确定依据及措施采取后的效果分析不够深入。针对上述问题,以阳煤一矿81403综采工作面为研究对象,通过数值模拟方式分析了近距离煤层群条件下开采应力分布及演化过程,研究了上覆岩层破坏及裂隙发育变化规律,得到了81403综采工作面瓦斯主要来源为煤层解吸瓦斯、上邻近层卸压瓦斯、采空区瓦斯等,针对不同瓦斯涌出源头和特点,优先采取顺层预抽+高抽巷+高位钻孔+采空区埋管的瓦斯抽采措施,即在开采前充分预抽减少煤层解析瓦斯量,通过高位钻孔、高抽巷处理邻近层瓦斯涌入,采用埋管治理上隅角瓦斯局部聚集,在时间和空间上形成综合的治理体系,从而达到瓦斯治理目的。实际应用结果表明,工作面回采期间瓦斯抽采率达到了89.9%,回风巷及上隅角瓦斯体积分数保持在1%以下,保证了工作面的安全回采。  相似文献   

5.
针对采用单一顺层普通钻孔或定向钻孔预抽煤巷条带瓦斯时存在普通钻机施工长钻孔易偏离轨迹、定向钻机施工成本较高等问题,以青龙煤矿21601掘进工作面为研究背景,提出了采用普通钻孔和定向钻孔联合预抽煤巷条带瓦斯。数值模拟结果表明:单钻孔预抽瓦斯时,抽采初期钻孔终孔位置处钻孔轴向瓦斯压力等值线呈“V”形分布,随着抽采时间延长,瓦斯压力“V”形分布逐渐平滑;钻孔径向瓦斯压力以钻孔为中心呈环状依次向外递增;预抽93 d时的有效抽采半径达3.80 m;普通钻孔和定向钻孔可分别有效控制煤巷两帮15 m和煤巷掘进工作面前方200 m范围内瓦斯。现场应用结果表明:普通钻孔和定向钻孔联合预抽时,瓦斯抽采总量平均值为19.86×10^3 m^3,瓦斯抽采体积分数平均值为53.5%,瓦斯抽采纯流量平均值为1.97 m^3/min,瓦斯抽采混合流量平均值为3.68 m^3/min,残余瓦斯含量小于8 m^3/t,瓦斯抽采效果良好。  相似文献   

6.
《工矿自动化》2016,(9):33-37
以河南新能开发有限公司王行庄煤矿为研究背景,介绍了保护层开采理论,考察了采取保护层开采措施前后同一测试地点的瓦斯参数,主要包括瓦斯含量、瓦斯压力、煤层的透气性系数及突出预测指标。现场试验结果表明,采取保护层开采措施后,被保护层区域瓦斯压力及含量大幅降低,瓦斯涌出量及突出预测指标明显下降,煤层透气性系数大幅增加。  相似文献   

7.
《工矿自动化》2021,47(1):100-106
针对煤矿松软低透煤层U型通风回采工作面的瓦斯治理存在抽采效率低、抽采浓度低、煤层透气性差、打钻成孔难等问题,以山西晋煤集团赵庄矿1307综采工作面为研究对象,提出了一种高瓦斯矿井高抽巷和底抽巷联合抽采的瓦斯抽采技术,即在原有U型通风的基础上外加一条高抽巷、一条中部底抽巷和一条边部底抽巷,边部底抽巷掩护2个掘进工作面的掘进,中部底抽巷穿层区域条带预抽本煤层瓦斯,高抽巷抽采上隅角瓦斯。确定了边部底抽巷和中部底抽巷的层位、钻孔布置及高抽巷的合理层位布置。实际应用结果表明,边部底抽巷掩护的煤巷掘进工作面最大瓦斯体积分数为0.48%,穿层钻孔抽采有效降低了掘进工作面的瓦斯涌出量;中部底抽巷抽采本煤层瓦斯后,瓦斯含量平均下降了4.18m3/t;高抽巷抽采负压为12~15kPa时,抽采纯量在46.13m3左右,减小了瓦斯向工作面涌出。  相似文献   

8.
超前瓦斯排放钻孔有效排放半径的测定   总被引:2,自引:0,他引:2  
介绍了煤层超前钻孔的防突机理,比较和分析了超前瓦斯排放钻孔有效排放半径的3种测定方法,选择钻屑量与钻屑瓦斯解吸指标法进行了现场应用。应用结果表明,使用钻屑量与钻屑瓦斯解吸指标法测定排放钻孔的有效排放半径简便易行,准确可靠。  相似文献   

9.
针对现有煤与瓦斯突出预测技术难以实现时间和空间领域的全方位连续预测、防突预测结果利用率低、预测信息发布滞后等问题,提出了一套适用于现代化高产高效矿井的多因素、全方位、时空连续型的煤与瓦斯突出协同预测技术体系.按照煤与瓦斯突出形成的时空维度,将煤与瓦斯突出危险性预测划分为以空间维度为主的区域突出危险性预测和以时间维度为主的局部突出危险性预测.通过对地质构造、煤层埋深、煤体煤质、软煤分布、钻屑指标、瓦斯涌出初速度等区域、局部防突预测数据的深度挖掘分析,得到区域、局部突出危险性预测结果,并按照一定规则进行有效融合,实现时间和空间范围内的连续监测预警.研发了配套的防突信息综合管控平台和WTC-1型瓦斯突出数据采集仪,为煤与瓦斯突出协同预测技术的实现提供了软硬件支撑.现场应用结果表明,该技术预测准确率超过90%,防突预测结果单次审批时间缩短为原来的22.5%,防突信息综合管控平台多次超前捕捉到了煤与瓦斯突出危险,提高了矿井防突信息利用效率.  相似文献   

10.
以成庄矿为例,分析了定向钻进技术在顺层钻孔抽采实体煤、高位钻孔抽采采空区、跨破碎带抽采待掘区域等方面的应用,研究了基于定向钻进技术的综合立体瓦斯抽采模式:针对实体煤层采用顺层递进模块式抽采技术,通过长时间、大范围抽采及预抽模块、掘进工作面、回采工作面的循环递进,实现回采煤量和抽采煤量的良性接替;针对"U"型通风上隅角瓦斯集聚区域采用顶板高位定向钻孔抽采技术,高位定向钻孔通过裂隙带与上隅角构成连通系统,采空区内瓦斯通过裂隙被钻孔抽出,从而降低采空区内瓦斯浓度;针对破碎煤层采用煤-岩-煤型顶板梳状定向钻孔技术,主孔布置于顶板中,钻孔跨越破碎煤体后施工梳状分支钻孔进入煤层,从而掩护下一阶段巷道掘进;针对煤层积水情况采用顶抽气-底排水组合式梳状定向钻孔技术,煤层中积水排采钻孔和顶板中瓦斯抽采钻孔在空间上实现水-气流场联通,煤层孔排水降压后利于顶板孔抽采瓦斯。采用该瓦斯抽采模式后,成庄矿瓦斯抽采率达60%以上。  相似文献   

11.
根据某矿1403综采工作面的煤层瓦斯特征,制定出上隅角瓦斯抽放、煤层浅孔注水等瓦斯综合治理方案,防止了瓦斯超限事故。探讨了综采工作面瓦斯综合治理方法和措施,以提高瓦斯治理效果,保证矿井的安全生产。  相似文献   

12.
为解决试验矿井采用传统抽采技术存在巷道掘进速度慢、采掘接替紧张的问题,提出采用深孔定向钻进瓦斯抽采技术施工定向长钻孔替代常规钻孔进行煤层瓦斯抽采的方案。定向钻进对煤层有效作用面积大,可以大范围改变煤体原始应力的分布,从而打破煤层瓦斯吸附-解吸的动态平衡,使大量吸附态瓦斯转化为游离态;在钻孔负压与煤体地应力和瓦斯压力形成的压力梯度作用下,游离态瓦斯源源不断地流向钻孔空间,使周围煤体瓦斯得到有效排放,煤体发生收缩变形,透气性系数大幅增加,地应力与瓦斯压力梯度减小,从而使得定向长钻孔抽采影响范围扩大,实现煤层瓦斯大面积有效抽采。试验结果表明:采用深孔定向钻进技术施工定向长钻孔成孔良好,试验钻孔总进尺为2 213m,主孔最大孔深达523m,日均抽采纯量为3 528m~3;钻孔平均瓦斯抽采体积分数高达88.3%,最高为98.0%;单孔平均瓦斯抽采纯量为1.23m~3/min,最大超过2m~3/min,瓦斯抽采效果显著;与常规钻孔抽采相比,定向钻孔单孔瓦斯抽采纯量提高了16倍多,单孔瓦斯抽采体积分数提高了2~4倍,巷道月均进尺提高了1倍多。  相似文献   

13.
为研究水力割缝强化瓦斯抽采技术在含夹矸煤层中的应用,通过理论分析得出,与普通钻孔相比,水力割缝钻孔可通过增加煤层渗透率、煤体暴露面积、瓦斯流动通道3个方面强化瓦斯抽采,并建立了考虑孔隙率和渗透率变化的煤层瓦斯流动控制方程。以东庞矿21218工作面为工程背景,采用COMSOL数值模拟软件建立了含夹矸煤层水力割缝瓦斯抽采数值模型,通过对煤层瓦斯流动控制方程进行解算,研究了不同割缝高度、不同钻孔间距条件下,水力割缝瓦斯抽采钻孔的瓦斯压力分布规律,从而确定了上煤层割缝0.3 m、下煤层割缝0.1 m、钻孔间距7.5 m的水力割缝瓦斯抽采钻孔施工参数。基于上述参数,在东庞矿21218工作面现场施工28组、每组7个水力割缝钻孔,对含夹矸煤层瓦斯进行抽采作业,结果表明:与普通钻孔相比,水力割缝钻孔的每百米巷道施工工程量减少了28.51%,瓦斯抽采纯量由11.53万m3提升至21.43万m3,增幅为85.86%,巷道掘进期间掘进工作面平均瓦斯体积分数由0.06%降至0.01%,瓦斯抽采效果好,且有效提高了瓦斯抽采效率。  相似文献   

14.
针对传统的人工处理瓦斯突出参数存在信息填报时效性低、工作量大、资料存储及查询分析不方便等问题,设计了矿井瓦斯突出参数自动处理系统。在WTC瓦斯突出参数仪中增加WiFi无线通信模块,使其能自动获取井下IP地址,接入无线网络,实现瓦斯突出参数自动上传。利用SQL Server数据库管理系统,依据数据属性匹配、测定时间关系,依次搜索、存储与瓦斯突出参数仪上传的预测指标相对应的钻孔编号、测定深度信息,生成防突预测表单。现场试验结果表明,该系统实现了瓦斯突出参数的自动上传、防突预测表单的自动生成和防突预测信息的局域网共享及查询,数据上传准确率达到98.2%以上。  相似文献   

15.
在综合考虑瓦斯流动惯性和滑脱效应的基础上,建立了瓦斯抽采流动模型。以松河煤矿15号煤层12150采煤工作面为工程背景,通过数值模拟分析了单一钻孔和多钻孔情况下瓦斯压力分布规律和渗透率变化情况,并结合钻孔抽采有效半径,得出了合理的抽采钻孔直径和钻孔布置参数。当单一钻孔瓦斯抽采240d时,通过比较钻孔直径为40,65,75,94mm时的瓦斯抽采效果,得出钻孔直径选取为65mm较为适宜。当3个钻孔在钻孔间距分别为3,4,5m时,进行不同时间段的瓦斯抽采的有效半径分析,得出当预抽采超过180d时,选用5m钻孔间距较为适宜;当抽采时间在120~150d时,选择4m钻孔间距较为适宜;当抽采时间少于120d时,选用3m钻孔间距较为适宜。煤层渗透率随抽采时间增加而逐渐增大,但增大幅度逐渐减小,抽采初期瓦斯压力梯度较大,大量吸附瓦斯解吸,瓦斯压力大于吸附膨胀应力,裂隙孔隙通道打开,此时煤层渗透率较大;抽采中后期,瓦斯压力持续降低,瓦斯压力相对吸附膨胀应力优势不大,孔隙裂隙增加量较小,造成在抽采中后期煤层渗透率增幅不大。  相似文献   

16.
段会军 《工矿自动化》2020,46(2):1-5,38
针对传统单一的上隅角瓦斯治理技术不能有效解决高强度开采综放工作面上隅角瓦斯严重超限的问题,以王家岭煤矿为工程背景,提出了利用上隅角插(埋)管和高位定向钻孔对瓦斯进行联合抽采方案。上隅角插(埋)管抽采即在工作面回风巷铺设瓦斯抽采管路,管路沿回风巷走向延伸至上隅角,在管口位置形成稳定负压区抽采上隅角瓦斯,通过抽吸作用形成人工风流,扰动上隅角位置的回旋涡流,降低瓦斯浓度。同时在工作面回风巷开掘钻场,施工高位定向钻孔向工作面切眼方向钻进,通过定向钻进技术使钻孔轨迹在采空区裂隙带内延伸,抽采采空区高浓度瓦斯。应用结果表明,上隅角插(埋)管和高位定向钻孔联合抽采后,瓦斯抽采纯量稳定在3.40~6.20 m 3/min,平均为4.91 m 3/min;工作面上隅角瓦斯体积分数呈阶梯式下降,最终稳定在0.30%~0.52%,平均为0.42%,上隅角瓦斯治理效果显著。  相似文献   

17.
钻孔煤强度仪的测量原理及结构江长青焦作工学院(焦作454159)1前言对煤与瓦斯突出矿井来说,煤的强度是判断煤与瓦斯突出危险性的一个重要指标。大量矿井自然灾害证明,在发生煤与瓦斯突出的地点,煤体结构紊乱,煤质松软,煤层裂隙多、揉皱和松散。在工作面生产...  相似文献   

18.
煤与瓦斯突出是煤矿开采过程中主要的动力灾害之一,针对煤与瓦斯突出等级预测问题,提高突出预测的准确率,选取最大主应力、瓦斯压力、瓦斯含量、顶板岩性、距断裂距离、煤层厚度、开采垂深、绝对瓦斯涌出量和相对瓦斯涌出量9个影响因素作为煤与瓦斯突出等级预测的评价指标,同时对相关程度较高的评价指标进行因子分析,提取公共因子,用随机森林算法进行训练预测,建立了基于因子分析的煤与瓦斯突出预测的随机森林模型。通过煤矿实测19组煤与瓦斯突出的数据作为训练样本数据集进行模型的训练,5组数据作为该预测模型的测试数据,进行煤与瓦斯突出预测,同时通过其他预测模型预测结果的对比,验证了随机森林算法在煤与瓦斯突出预测中具有较高的准确度。  相似文献   

19.
薛湖煤矿二2煤层瓦斯含量高、透气性差,采用顺层钻孔治理煤层瓦斯存在瓦斯抽采效果差、抽采达标时间长等问题,将超高压水力割缝技术应用于该煤层钻孔瓦斯抽采中。通过单因素试验确定了适用于薛湖煤矿二2煤层的超高压水力割缝优化工艺参数:割缝压力为60~70 MPa,割缝时间为25 min,割缝转速为80 r/min,割缝间距为2 m。现场应用采用该工艺参数的超高压水力割缝技术后,割缝钻孔与普通钻孔相比,前者日均瓦斯抽采体积分数约为后者的1.75倍,日均瓦斯抽采纯量为后者的3.25倍,瓦斯抽采达标时间缩短了约42%,残余瓦斯含量小。  相似文献   

20.
为了提高煤矿高位钻孔抽采瓦斯效率,基于覆岩采动破坏理论和瓦斯运移特征,提出了高位钻孔优势抽采区的概念,即位于冒落带和裂隙带之间的能够保证稳定高效抽采效果的区域。以下沟煤矿作为研究对象,采用数值模拟及现场验证的方法确定了该矿ZF302采煤工作面的高位钻孔优势抽采区,并对其分布规律进行了研究。研究结果表明,ZF302采煤工作面抽采优势区位于顶板垂高为34~57m的区域;抽采优势区中,单孔瓦斯抽采量呈现出先升高、后平稳、再降低的趋势;当终孔高度位于70~57m区域时,单孔瓦斯抽采量从0.66m~3/min逐渐上升至1.48m~3/min,之后在高度57~34m区域内进入平稳区,单孔瓦斯抽采量始终保持在1.0m~3/min以上;高位钻孔终孔位置位于顶板垂高55~65m范围内时,优势抽采区的抽采时间最长,单孔瓦斯抽采量最高;钻孔参数优化后,钻场钻孔数量从28个减少到18个,减少了35.71%;日抽采量从26 008.75m~3提升到31 046.4m~3,提升了19.37%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号