首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The high nutritional value of whey makes it an interesting substrate for the development of fermented foods. The aim of this work was to evaluate the growth and proteolytic activity of sixty-four strains of lactic acid bacteria in whey to further formulate a starter culture for the development of fermented whey-based beverages. Fermentations were performed at 37 °C for 24 h in 10 and 16% (w/v) reconstituted whey powder. Cultivable populations, pH, and proteolytic activity (o-phthaldialdehyde test) were determined at 6 and 24 h incubation. Hydrolysis of whey proteins was analysed by Tricine SDS-PAGE. A principal component analysis (PCA) was applied to evaluate the behaviour of strains. Forty-six percent of the strains grew between 1 and 2 Δlog CFU/ml while 19% grew less than 0·9 Δlog CFU/ml in both reconstituted whey solutions. Regarding the proteolytic activity, most of the lactobacilli released amino acids and small peptides during the first 6 h incubation while streptococci consumed the amino acids initially present in whey to sustain growth. Whey proteins were degraded by the studied strains although to different extents. Special attention was paid to the main allergenic whey protein, β-lactoglobulin, which was degraded the most by Lactobacillus acidophilus CRL 636 and Lb. delbrueckii subsp. bulgaricus CRL 656. The strain variability observed and the PCA applied in this study allowed selecting appropriate strains able to improve the nutritional characteristics (through amino group release and protein degradation) and storage (decrease in pH) of whey.  相似文献   

2.
The effects of sugar substrates on capsule size and production by some capsule-forming nonropy and ropy dairy starter cultures were studied. Test sugars (glucose, lactose, galactose, or sucrose) were used as a sole carbohydrate source and the presence of a capsule and its size were determined by using confocal scanning laser microscopy. Nonropy strains produced maximum capsule size when grown in milk. Strains that did not produce capsules in milk did not produce them in any other growth medium. Specific sugars required for capsule production were strain-dependent. Increasing lactose content of Elliker broth from 0.5 to 5% or adding whey protein or casein digest produced larger capsules. Whey protein concentrate stimulated production of larger capsules than did casamino acids or casitone. Some Streptococcus thermophilus strains produced capsules when grown on galactose only. Nonropy strains of Lactobacillus delbrueckii subsp. bulgaricus produced capsules on lactose, but not on glucose. A ropy strain of Lactobacillus delbrueckii subsp. bulgaricus produced a constant capsule size regardless of the growth medium. The ability of some strains of Streptococcus thermophilus to use galactose in capsule production could reduce browning of mozzarella cheese during baking by removing a source of reducing sugar. Media that do not support capsule production may improve cell harvesting.  相似文献   

3.
Yoghurts are mostly produced from cow milk and to a very limited extent from ewe milk. The evolution of caseins and whey proteins in ovine milk submitted to different thermal treatments (63 degrees C/30 min; 73 degrees C/15 min; 85 degrees C/10 min or 96 degrees C/5 min) was followed during fermentation of yoghurts and during their storage up to 14 days, using two different sets of starters. One set of starter LAB was a "ropy" culture (YC-191), which is a well-defined mixed strain culture containing Streptococcus thermophilus ST-143 and Lactobacillus delbrueckii subsp. bulgaricus (LB-18 and LB-CH2). The other set of starter bacteria (YC-460) was a standard yoghurt culture("non-ropy") containing mixed strain culture of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. Contents of free amino groups in produced yoghurts increased gradually during the fermentation, up to a maximal value obtained after 4 h fermentation, then they did not change significantly during storage of yoghurt produced with YC-191 starter. In contrary, a large drop in the amount of free amino groups was observed in the first 24 h of storage in the case of yoghurt made with YC-460 indicating that microorganisms continue still to grow in low temperatures. During fermentation and storage of both yoghurt types, alpha-lactalbumin was hydrolyzed to a slightly bigger extent than beta-lactoglobulin. During fermentation, beta-casein was slightly more degraded than alpha(s)-caseins; however, the opposite was observed during storage up to 14 days. Generally, a more intense heat pretreatment led to a higher degradation of whey proteins and caseins during fermentation and storage. Differences in proteolytic activity between the two starters used (whey proteins more degraded by YC-191; caseins more degraded by YC-460) may lead to improvement in production and formulation of yoghurts differing in their physicochemical and rheological properties.  相似文献   

4.
Lactobacillus plantarum 18A, Lactobacillus helveticus 2B, Lactobacillus delbrueckii subsp. lactis 20F, Streptococcus thermophilus 22C, Enterococcus faecalis 32C and Enterococcus durans 16E were the most acidifying strains within 146 isolates for natural whey starters. The effect of media and temperature on 2 autochthonous multiple strain cultures (AMSI: 18A, 2B, 20F and 22C, 32C and 16E and AMSII: 18A, 2B, 20F and 22C) was studied. Genomic analysis showed a constant cell numbers for AMSII during 16 days of propagation in whey milk. Mozzarella cheese was made by using AMSII, commercial starter (CS) or citric acid (DA). Compared to other cheeses, the DA had a lower level of protein, ash, Ca, free amino acids and a higher level of moisture. Based on confocal laser scanning microscopy analysis, AMSII cheese showed the lowest microstructural variations during the period of storage compared to other cheeses. All the sensory attributes were scored highest for AMSII cheese. ASMII extend the shelf-life to ca. 12-15 days instead of the 5-7 days of traditional high-moisture Mozzarella cheese.  相似文献   

5.
We investigated the effect of capsular and ropy exopolysaccharide-producing Streptococcus thermophilus starter bacteria on Mozzarella cheese functionality and whey viscosity. Mozzarella cheeses were manufactured with Lactobacillus helveticus LH100 paired with one of four S. thermophilus strains: MR-1C, a bacterium that produces a capsular exopolysaccharide; MTC360, a strain that secretes a ropy exopolysaccharide; TAO61, a nonexopolysaccharide-producing commercial cheese starter; and DM10, a nonencapsulated, exopolysaccharide-negative mutant of strain MR-1C. As expected, cheese moisture levels were significantly higher in Mozzarella cheeses made with exopolysaccharide-positive versus exopolysaccharide-negative streptococci, and melt properties were better in the higher moisture cheeses. Whey viscosity measurements showed that unconcentrated and ultrafiltered, fivefold concentrated whey from cheeses made with S. thermophilus MTC360 were significantly more viscous than whey from cheeses made with MR-1C, TAO61, or DM10. No significant differences were noted between the viscosity of unconcentrated or concentrated whey from cheeses made with S. thermophilus MR-1C versus the industrial cheese starter TAO61. These data indicate that encapsulated, but not ropy, exopolysaccharide-producing S. thermophilus strains can be utilized to increase the moisture level of cheese and to improve the melt properties of Mozzarella cheese without adversely affecting whey viscosity.  相似文献   

6.
A new processing method that rapidly forms curds and whey from milk has the potential to improve cheesemaking procedures if cheese starter cultures can tolerate the processing conditions. The survival of Lactobacillus delbrueckii ssp. bulgaricus, Lactococcus lactis ssp. lactis, or Streptococcus thermophilus through this new process was evaluated. Inoculated milk containing 0, 1, or 3.25% fat or Lactobacillus MRS broth or tryptone yeast lactose broth (depending on microorganism used) was sparged with CO2 to a pressure of 5.52 MPa and held for 5 min at 38 degrees C. Broth contained 7.93 to 8.78 log CFU/ ml before processing and 7.84 to 8.66 log CFU/ml afterward. Before processing, milk inoculated with L bulgaricus, L. lactis, or S. thermophilus contained 6.81, 7.35, or 6.75 log CFU/ml, respectively. After processing, the curds contained 5.68, 7.32, or 6.50 log CFU/g, and the whey had 5.05, 6.43, or 6.14 log CFU/ml, respectively. After processing, the pHs of control samples were lower by 0.41 units in broth, 0.53 units in whey, and 0.89 units in curd. The pH of the processed inoculated samples decreased by 0.3 to 0.53 units in broth, 0.32 to 0.37 units in whey, and 0.93 to 0.98 units in the curd. Storing curds containing L. lactis at 30 degrees C or control curds and curds with L. bulgaricus or S. thermophilus at 37 degrees C for an additional 48 h resulted in pHs of 5.22, 5.41, 4.53, or 4.99, respectively. This study showed that milk inoculated with cheese starter cultures and treated with CO2 under high pressure to precipitate casein-produced curds that contained sufficient numbers of viable starter culture to produce lactic acid, thereby decreasing the pH.  相似文献   

7.
The thermal coagulation of unfractionated whey proteins was inhibited by various sugars. The disaccharides, sucrose and lactose, were most effective, and the amino sugar, glucosamine, least effective in this respect. Ultraviolet absorption and light-scattering measurements on the thermal denaturation and coagulation of both unfractionated and individual whey proteins (alpha-lactalbumin, beta-lactoglobulin, and bovine serum albumin) showed that sucrose promotes the denaturation of these proteins but inhibits their subsequent coagulation. These results are interpreted in terms of the effect of sucrose on the hydrophobic interactions between solvent and protein.  相似文献   

8.
ABSTRACT: :
The proteolytic activity of a starter culture involving Lactobacillus plantarum and Lactobacillus casei towards meat sarcoplasmic and myofibrillar proteins during the fermentation of a sausage-like system was studied. After 96 h of incubation the proteolytic system of L. plantarum CRL681 caused a degradation of both sarcoplasmic and myofibrillar proteins, whereas L. casei CRL705 showed a different affinity to meat proteins. The inoculation of both strains showed a higher activity toward sarcoplasmic fraction. These results correlated with a high rate of sarcoplasmic protein degradation observed in SDS-PAGE analysis. The generation of free amino acids as well as the pH drop at the end of the incubation period was maximal in presence of the mixed starter culture, thereby demonstrating the suitability of these strains to be used in the fermentation of meat products.  相似文献   

9.
The use of cheese whey and probiotic cultures in the production of dairy beverages has been highly attractive; nonetheless, whey-based goat beverages tend to be poor and watery when compared to fermented milks. The addition of fruits and fibre ingredients might improve texture and mouthfeel of this kind of product. Fermented whey-based goat beverages prepared using Streptococcus thermophilus TA-40 as starter culture, with added guava or soursop pulps, and with or without addition of partially hydrolysed galactomannan from Caesalpinia pulcherrima seeds (PHGM), showed to be good vehicles for Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus rhamnosus Lr-32, maintaining their viability above 7 log CFU/ml during 21 days. PHGM increased the dietary fibre content and enhanced the instrumental texture and sensory features of both guava and soursop dairy beverages, especially texture, appearance, and overall acceptability. The PHGM might be recommended to improve nutritional and sensory quality of fermented probiotic beverages produced with goat milk and cheese whey.  相似文献   

10.
11.
Quantification of water-soluble volatile free fatty acids (FFA) and free amino acids (FAA) was performed as a ripening index and an indirect measure of flavor development in Swiss-type cheeses. The objective of this research was to assess the effect of warm room treatment (WRT) and usage ratio of starter cultures, Streptococcus thermophilus and Lactobacillus helveticus vs. propionibacteria, on the concentration of FFA and FAA in pilot plant-scale Swiss cheese. A capillary gas chromatograph equipped with a flame ionization detector was used for the analysis of FFA in Swiss cheese. Free amino acids were analyzed by the Cd-ninhydrin method. Starter culture ratios did not affect development of FAA during the cheese ripening. However, duration of WRT had an effect on the concentration of FAA in the Swiss cheese. Free amino acids increased considerably during WRT. A continuous increase in FAA was shown during 70-d ripening time after WRT. The concentrations of C2:0 and C3:0 fatty acids were affected by starter culture ratios after 2-wk WRT, but these differences had mostly disappeared after 3-wk WRT. Similar concentrations of FFA and FAA reported in previous studies were developed in Swiss cheese with a 3-wk WRT and a 0.33:1 ratio of Streptococcus thermophilus and Lactobacillus helveticus to propionibacteria.  相似文献   

12.
ABSTRACT:  Viability of yogurt starter cultures and Bifidobacterium animalis was assessed during 28 d storage in reduced-fat yogurts containing 1.5% milk fat supplemented with 1.5% fructooligosaccharide or whey protein concentrate. These properties were examined in comparison with control yogurts containing 1.5% and 3% milk fat and no supplement. Although fructooligosaccharide improved the viability of Streptococcus thermophilus , Lactobacillus delbrueckii subs. bulgaricus, and Bifidobacterium animalis , the highest growth was obtained when milk was supplemented with whey protein concentrate in reduced-fat yogurt ( P < 0.05). Supplementation with 1.5% whey protein concentrate in reduced-fat yogurt increased the viable counts of S. thermophilus , L. delbrueckii subs. bulgaricus, and B. animalis by 1 log cycle in the 1st week of storage when compared to control sample. Similar improvement in the growth of both yogurt bacteria and B. animalis was also obtained in the full-fat yogurt containing 3% milk fat and no supplement. Addition of whey protein concentrate also resulted in the highest content of lactic and acetic acids ( P < 0.05). A gradual increase was obtained in organic acid contents during the storage.  相似文献   

13.
Effect of labeled precursor amino acids, varying cell densities, graded quantities of amino acid complement, and incubation environment on milk protein synthesis were studied with cultures of mammary cells isolated from Sprague Dawley rats. The essential amino acid complement of Eagle's minimal essential medium was used as base. Protein synthesis, measured by incorporation of labeled lysine, leucine, and phenylalanine, was affected by source of label for the "beta-lactoglobulin fraction" and beta-casein but not alpha-lactalbumin. Cell numbers between 6 X 106 and 6 X 107 per 5 ml of culture medium did not significantly alter rates of synthesis. Increasing amounts of amino acid concentration from one to three-fold increased synthesis of "beta-lactoglobulin fraction" and alpha-lactalbumin regardless of cell population. Response to addition of essential amino acid for "beta-lactoglobulin fraction" synthesis was linear over one to five-fold with 30.9 mug/flask per fold addition (linear regression coefficient; squared correlation = .91). Results were similar for beta-casein synthesis; 25.9 mug/flask and squared correlation = .91. No culturing effects between carbon dioxide and conventional incubators were significant.  相似文献   

14.
对从商业乳酸菌发酵剂分离纯化的11株保加利亚乳杆菌和11株嗜热链球菌在发酵羊奶中的耐热性进行了研究。结果表明,保加利亚乳杆菌L.b-346和L.b-124菌株、嗜热链球菌S.t-883菌株和S.t-124菌株的耐热性较好;当L.b-346菌株、L.b-124菌株与S.t-883菌株、S.t-124菌株按杆菌和球菌以不同比例配合时,L.b-346菌株与S.t-124菌株以1∶2比例配合,可获得较高的耐热性。  相似文献   

15.
The characteristics of cell growth, lactic acid production, amino acid release and consumption by single-strain cultures of lactic acid bacteria (isolated from kefir grains), and by a multiple-strain kefir starter prepared from them, were studied. The change in the levels of free amino acids was followed throughout the kefir process: single-strain kefir bacteria and the kefir starter (Lactococcus lactis C15-1%+Lactobacillus helveticus MP12-3%+(Streptococcus thermophilus T15+Lactobacillus bulgaricus HP1 = 1:1)-3%) were cultivated in pasteurized (92 degrees C for 20 min) cow's milk (3% fat content) at 28 degrees C for 5 h (the kefir starter reached pH 4.7) and subsequently grown at 20 degrees C for 16 h; storage was at 4 degrees C for 168 h. The strain L. helveticus MP12 was unrivaled with respect to free amino acid production (53.38 mg (100 g)(-1)) and cell growth (17.8 x 10(8) CFU ml(-1)); however, it manifested the lowest acidification activity. L. bulgaricus HP1 released approximately 3.7 times less amino acids, nearly 5 times lower cell growth, and produced about 1.2 times more lactic acid. S. thermophilus T15 demonstrated dramatically complex amino acid necessities for growth and metabolism. With L. lactis C15, the highest levels of growth and lactic acid synthesis were recorded (18.3 x 10(8) CFU ml(-1) and 7.8 g l(-1) lactic acid at the 21st hour), and as for free amino acid production, it approximated L. bulgaricus HP1 (17.03 mg (100 g)(-1) maximum concentration). In the L. lactis C15 culture, the amino acids were used more actively throughout the first exponential growth phase (by the 10th hour) than during the second growth phase. The unique properties of the L. helveticus MP12 strain to produce amino acids were employed to create a symbiotic bioconsortium kefir culture, which, under conditions of kefir formation, enhanced lactic acid production and shortened the time required to reach pH 4.7; intensified cell growth activity, resulting in a respective 90- and 60-fold increase in the concentration of lactobacilli and cocci in the mixed culture compared to individual cultures; and accumulated free amino acids in the final kefir with higher total concentrations (56.88 mg (100 g)(-1)) and an individual concentration of essential amino acids (1.5 times) greater than that of yogurt.  相似文献   

16.
Study of heat denaturation of major whey proteins (beta-lactoglobulin or alpha-lactalbumin) either in separated purified forms, or in forms present in fresh industrial whey or in recomposed mixture respecting whey proportions, indicated significant differences in their denaturation depending on pH, temperature of heating, presence or absence of other codenaturation partner, and of existence of a previous thermal pretreatment (industrial whey). alpha-Lactalbumin, usually resistant to tryptic hydrolysis, aggregated after heating at > or = 85 degrees C. After its denaturation, alpha-lactalbumin was susceptible to tryptic hydrolysis probably because of exposure of its previously hidden tryptic cleavage sites (Lys-X and Arg-X bonds). Heating over 85 degrees C of beta-lactoglobulin increased its aggregation and exposure of its peptic cleavage sites. The co-denaturation of alpha-lactalbumin with beta-lactoglobulin increased their aggregation and resulted in complete exposure of beta-lactoglobulin peptic cleavage sites and partial unveiling of alpha-lactalbumin tryptic cleavage sites. The exposure of alpha-lactalbumin tryptic cleavage sites was slightly enhanced when the alpha-lactalbumin/beta-lactoglobulin mixture was heated at pH 7.5. Co-denaturation of fresh whey by heating at 95 degrees C and pH 4.5 and above produced aggregates stabilized mostly by covalent disulfide bonds easily reduced by beta-mercaptoethanol. The aggregates stabilized by covalent bonds other than disulfide arose from a same thermal treatment but performed at pH 3.5. Thermal treatment of whey at pH 7.5 considerably enhanced tryptic and peptic hydrolysis of both major proteins.  相似文献   

17.
Whey is often stored or transported for a period of time prior to processing. During this time period, galactose and lactic acid concentrations may accumulate, reducing the quality of spray-dried whey powders in regard to stickiness and agglomeration. This study surveyed industry samples of Cheddar and mozzarella cheese whey streams to determine how galactose and lactic acid concentrations changed with storage at appropriate (4 degrees C) and abuse (37.8 degrees C) temperatures. Samples stored at 4 degrees C did not exhibit significant increases in levels of lactic acid or galactose. Mozzarella whey accumulated the greatest amount of galactose and lactic acid with storage at 37.8 degrees C. Whey samples derived from cheese made from single strains of starter culture were also evaluated to determine each culture's contribution to galactose and lactic acid production. Starter cultures evaluated included Streptococcus salivarius ssp. thermophilus. Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, Lactococcus lactis ssp. cremoris, and Lactococcus lactis ssp. lactis. Whey derived from L. helveticus accumulated a significantly greater amount of lactic acid upon storage at 37.8 degrees C as compared with the other cultures. Galactose accumulation was significantly decreased in whey from L. lactis ssp. lactis stored at 37.8 degrees C in comparison with the other cultures. Results from this study indicate that proper storage conditions (4 degrees C) for whey prevent accumulation of galactose and lactic acid while the extent of accumulation during storage at 37.8 degrees C varies depending on the culture(s) used in cheese production.  相似文献   

18.
Proteins in mammary secretions were examined during the dry period of four cows. Polyacrylamide gel electrophoresis was used to determine relative changes in the electrophoretic profiles of whey proteins in the mammary secretions. Concentrations of beta-lactoglobulin and alpha-lactalbumin in dry cow secretions were determined by immunoassay. Concentrations of both proteins changed in parallel during the dry period. Concentrations of beta-lactoglobulin and alpha-lactalbumin decreased during the first 30 d of the dry period but generally remained above .1 mg/ml secretion. A transient increase in beta-lactoglobulin and alpha-lactalbumin concentrations occurred at about 40 d after drying-off, prior to the prepartum increase.  相似文献   

19.
Reggianito Argentino cheese is traditionally manufactured with whey starter cultures that provide typical and intense flavor but can cause poor quality standardization. In this study, the influence of natural and selected starters on Reggianito Argentino cheese proteolysis was investigated. Cheeses were manufactured with three strains of Lactobacillus helveticus (SF133, SF138 and SF209) cultured individually in sterile whey and used as single or mixed starters. Control cheeses were made with natural whey starter culture. Cheeses were analyzed to determine gross composition, as well as total thermophilic lactic flora. Proteolysis was assessed by N fractions, electrophoresis and liquid chromatography. Gross composition of the cheeses did not significantly differ, while viable starter cell counts were lower for cheeses made with strain SF209 alone or combined with other strains. Soluble N at pH 4.6 was the same for cheeses made with natural or selected starters, but soluble N in 12% trichloroacetic acid and 2.5% phosphotungstic acid was significantly higher in cheeses made with starters containing strain SF209. Nitrogen fractions results indicated that natural whey starter cultures could be replaced by several starters composed of the selected strains without significant changes to proteolysis patterns. Starter cultures prepared only with SF209 or with the three selected L. helveticus strains produced cheese products with significantly more proteolysis than control cheeses. Chromatographic profiles analyzed by principal components showed that three main peaks on chromatograms, presumptively identified as Tyr, Phe, and Trp, explained most of variability. Principal component scores indicated that cheese samples were grouped by ripening time, which was confirmed by linear discriminant analysis. On the contrary, samples did not cluster by Lactobacillus strain or type of starter.  相似文献   

20.
The role of Lactobacillus strains with bioprotective and technological potential on raw beef during 15days of storage under vacuum at 7°C was investigated. The assayed strains were able to grow on the meat, Lactobacillus curvatus CRL705 and Lactobacillus sakei 23K showing the highest competitiveness. A net increase of amino acids was determined in inoculated samples when compared to the control, this being maximal for Lactobacillus plantarum CRL681. Although an important endogenous activity of meat sarcoplasmic proteins was observed, the disappearance of protein bands and the generation of a new one were detected as a consequence of Lactobacillus growth. A synergistic effect of Lactobacillus in combination with the muscle proteolytic enzyme complex can be suggested. From the studied strains, the bacteriocin producer L. curvatus CRL705 may be considered as a good candidate to contribute to meat ageing by means of small peptides and free amino acids generation while improving shelf life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号