首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The optimization of TiO2-impregnated chitosan beads (TICB) as an arsenic adsorbent is investigated to maximize the capacity and kinetics of arsenic removal. It has been previously reported that TICB can 1) remove arsenite, 2) remove arsenate, and 3) oxidize arsenite to arsenate in the presence of UV light and oxygen. Herein, it is reported that adsorption capacity for TICB is controlled by solution pH and TiO2 loading within the bead and enhanced with exposure to UV light. Solution pH is found to be a critical parameter, whereby arsenate is effectively removed below pH 7.25 and arsenite is effectively removed below pH 9.2. A model to predict TICB capacity, based on TiO2 loading and solution pH, is presented for arsenite, arsenate, and total arsenic in the presence of UV light. The rate of removal is increased with reductions in bead size and with exposure to UV light. Phosphate is found to be a direct competitor with arsenate for adsorption sites on TICB, but other relevant common background groundwater ions do not compete with arsenate for adsorption sites. TICB can be regenerated with weak NaOH and maintain full adsorption capacity for at least three adsorption/desorption cycles.  相似文献   

2.
Single solute As (III) and As (V) sorption on nano-sized amorphous and crystalline TiO2 was investigated to determine: size and crystallinity effects on arsenic sorption capacities, possible As (III) oxidation, and the nature of surface complexes. Amorphous and crystalline nanoparticles were prepared using sol-gel synthesis techniques. For amorphous TiO2, solute pH in the range of 4-9 had a profound impact on only As (V) sorption. As (III) and As (V) sorption isotherms indicated that sorption capacities of the different TiO2 polymorphs were dependent on the sorption site density, surface area (particle size) and crystalline structure. When normalized to surface area, As (III) surface coverage on the TiO2 surface remained almost constant for particles between 5 and 20 nm. However, As (V) surface coverage increased with the degree of crystallinity. X-ray absorption spectroscopic analysis provided evidence of partial As (III) oxidation on amorphous TiO2 rather than crystalline TiO2. The data also indicated that As (III) and As (V) form binuclear bidentate inner-sphere complexes with amorphous TiO2 at neutral pH.  相似文献   

3.
Arsenic concentrations exceeding the World Health Organization drinking water guideline (10 μg/L) have been measured in thermal and non-thermal groundwaters from the Caldes de Malavella geothermal area (La Selva graben, NE Spain). The CO2-rich Na-HCO3 thermal waters (up to 60 °C at the spring) have elevated arsenic concentrations ([AsT] from 50 to 80 μg/L). The non-thermal waters are of Ca-Na-HCO3-Cl type and have [AsT] between <1 and 200 μg/L, defining a hot-spot distribution. The present-day contribution of As from CO2-rich thermal waters to non-thermal aquifers is very limited, as shown by the concentration of geothermal tracers such as Li and B. Redox-controlling processes appear to govern the mobility of As in the non-thermal waters. Arsenate is clearly predominant in most oxidizing groundwaters (>85% of As(V) over total As), whereas reducing, high-As groundwater reaches up to 100% in arsenite. The reductive dissolution of Fe(III) oxyhydroxides and the coupled release and reduction of adsorbed As explain the elevated dissolved arsenite (up to 190 μg/L) and Fe (up to 14 mg/L) content in the more reducing non-thermal groundwater. Conversely, the high levels of nitrate (up to 136 mg/L) ensure an oxidizing environment in most non-thermal groundwaters ([AsT] between <1 and 60 μg/L). Under these conditions, Fe(III) oxyhydroxides are stable and As release to groundwater is not related to their dissolution. Instead, dissolved arsenate concentrations up to 60 μg/L are explained by a competition for sorption sites with other species, mainly bicarbonate and silicic acid, while arsenate desorption due to pH increase is not considered a major process.  相似文献   

4.
Mixed metal oxide impregnated chitosan beads (MICB) containing nanocrystalline Al2O3 and nanocrystalline TiO2 were successfully developed. This adsorbent exploits the high capacity of Al2O3 for arsenate and the photocatalytic activity of TiO2 to oxidize arsenite to arsenate, resulting in a removal capacity higher than that of either metal oxide alone. The composition of the beads was optimized for maximum arsenite removal in the presence of UV light. The mechanism of removal was investigated and a mode of action was proposed wherein TiO2 oxidizes arsenite to arsenate which is then removed from solution by Al2O3. Pseudo-second order kinetics were used to validate the proposed mechanism. MICB is a more efficient and effective adsorbent for arsenic than TiO2-impregnated chitosan beads (TICB), previously reported on, yet maintains a desirable life cycle, free of complex synthesis processes, toxic materials, and energy inputs.  相似文献   

5.
Polyaluminum chloride (PACl) is a well-established coagulant in water treatment with high removal efficiency for arsenic. A high content of Al30 nanoclusters in PACl improves the removal efficiency over broader dosage and pH range. In this study we tested PACl with 75% Al30 nanoclusters (PAClAl30) for the treatment of arsenic-contaminated well water by laboratory batch experiments and field application in the geothermal area of Chalkidiki, Greece, and in the Pannonian Basin, Romania. The treatment efficiency was studied as a function of dosage and the nanoclusters’ protonation degree. Acid-base titration revealed increasing deprotonation of PAClAl30 from pH 4.7 to the point of zero charge at pH 6.7. The most efficient removal of As(III) and As(V) coincided with optimal aggregation of the Al nanoclusters at pH 7-8, a common pH range for groundwater. The application of PAClAl30 with an Altot concentration of 1-5 mM in laboratory batch experiments successfully lowered dissolved As(V) concentrations from 20 to 230 μg/L to less than 5 μg/L. Field tests confirmed laboratory results, and showed that the WHO threshold value of 10 μg/L was only slightly exceeded (10.8 μg/L) at initial concentrations as high as 2300 μg/L As(V). However, As(III) removal was less efficient (<40%), therefore oxidation will be crucial before coagulation with PAClAl30. The presence of silica in the well water improved As(III) removal by typically 10%. This study revealed that the Al30 nanoclusters are most efficient for the removal of As(V) from water resources at near-neutral pH.  相似文献   

6.
The appearance and the persistence of pharmaceutical products in the aquatic environment urgently call for the development of an innovative and practical water treatment technology. This study deals with the development of nanostructured nitrogen-doped TiO2 photoanodes and their subsequent use for chlortetracycline (CTC) photoelectrocatalytic oxidation under visible light. The N-doped TiO2 photoanodes with different nitrogen contents were prepared by means of a radiofrequency magnetron sputtering (RF-MS) process, with the objective to tune shift their optical absorption from the UV towards the visible. The N-doped TiO2 consist of nanostructured anatase phase with average TiO2 nanocrystallite size of 29 nm. The nitrogen doping is clearly shown to produce the desired red shift of the absorption onset of the TiO2 coatings (from ∼380 nm to ∼550 nm). Likewise, the N-doped TiO2 are found to be highly photo-electroactive not only under the UV light but most interestingly under the visible light as well. Using the optimal N-doped photoanodes, 99.6% of CTC (100 μg/L) was successfully degraded after 180 min of treatment time with a current intensity of 0.6 A. Under these conditions, a relatively high mineralization of CTC (92.5% ± 0.26% of TOC removal and 90.3% ± 1.1% of TN removal) was achieved.  相似文献   

7.
Seafood, especially fish, is considered as a major dietary source of arsenic (As). Seafood consumption is recommended for nutritional properties but contaminant exposure should be considered. The objectives were to assess As intake of frequent French seafood consumers and exposure via biomarkers. Consumptions of 996 high consumers (18 and over) of 4 coastal areas were assessed using a validated food frequency questionnaire. Seafood samples were collected according to a total diet study (TDS) sampling method and analyzed for total As, arsenite (AsIII), arsenate (AsV), arsenobetaïne (AsB), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). The average As dietary exposure is 94.7 ± 67.5 μg/kg bw/week in females and 77.3 ± 54.6 μg/kg bw/week in males (p < 0.001) and the inorganic As dietary exposure is respectively 3.34 ± 2.06 μg/kg bw/week and 3.04 ± 1.86 μg/kg bw/week (p < 0.05).Urine samples were collected from 382 of the subjects. The average urinary As concentration is 94.8 ± 250 μg/g creatinine for females and 59.7 ± 81.8 μg/g for males (p < 0.001). Samples having an As concentration above 75 μg/g creatinine (n = 101) were analyzed for inorganic As (As(III), As(V), MMA(V) and DMA(V)) which was 24.6 ± 27.9 μg/g creatinine for males and 27.1 ±20.6 μg/g for females. Analyses do not show any correlation between dietary exposure and urinary As.These results show that biological results should be interpreted cautiously. Diet recording seems to be the best way to assess dietary As exposure. Seafood is a high source of As exposure but even among high consumers it is not the main source of toxic As. From a public health point of view these results should be interpreted carefully in the absence of international consensus on the health-based guidance value.  相似文献   

8.
Highly porous, nanostructured zirconium oxide spheres were fabricated from ZrO2 nanoparticles with the assistance of agar powder to form spheres with size at millimeter level followed with a heat treatment at 450 °C to remove agar network, which provided a simple, low-cost, and safe process for the synthesis of ZrO2 spheres. These ZrO2 spheres had a dual-pore structure, in which interconnected macropores were beneficial for liquid transport and the mesopores could largely increase their surface area (about 98 m2/g) for effective contact with arsenic species in water. These ZrO2 spheres demonstrated an even better arsenic removal performance on both As(III) and As(V) than ZrO2 nanoparticles, and could be readily applied to commonly used fixed-bed adsorption reactors in the industry. A short bed adsorbent test was conducted to validate the calculated external mass transport coefficient and the pore diffusion coefficient. The performance of full-scale fixed bed systems with these ZrO2 spheres as the adsorber was estimated by the validated pore surface diffusion modeling. With the empty bed contact time (EBCT) at 10 min and the initial arsenic concentration at 30 ppb, the number of bed volumes that could be treated by these dry ZrO2 spheres reached ∼255,000 BVs and ∼271,000 BVs for As(III) and As(V), respectively, until the maximum contaminant level of 10 ppb was reached. These ZrO2 spheres are non-toxic, highly stable, and resistant to acid and alkali, have a high arsenic adsorption capacity, and could be easily adapted for various arsenic removal apparatus. Thus, these ZrO2 spheres may have a promising potential for their application in water treatment practice.  相似文献   

9.
Parshetti GK  Doong RA 《Water research》2011,45(14):4198-4210
The coupled removal of priority pollutants by nanocomposite materials has recently been receiving much attention. In this study, trichloroethylene (TCE) and 2,4-dichlorophenol (DCP) in aqueous solutions were simultaneously removed by Fe/TiO2 nanocomposites under anoxic conditions in the presence of nickel ions and UV light at 365 nm. Both TCE and DCP were effectively dechlorinated by Fe/TiO2 nanocomposites, and the pseudo-first-order rate constants (kobs) for TCE and DCP dechlorination were (1.39 ± 0.05)×10−2 and (1.08 ± 0.05)×10−2 h−1, respectively, which were higher than that by nanoscale zerovalent iron alone. In addition, the kobs for DCP dechlorination was enhanced by a factor of 77 when Fe/TiO2 was illuminated with UV light for 2 h. Hydrodechlorination was found to be the major reaction pathway for TCE dechlorination, while DCP could undergo reductive dechlorination or react with hydroxyl radicals to produce 1,4-benzoquinone and phenol. TCE was a stronger electron acceptor than DCP, which could inhibit the dechlorination efficiency and rate of DCP during simultaneous removal processes. The addition of nickel ions significantly enhanced the simultaneous photodechlorination efficiency of TCE and DCP under the illumination of UV light. The kobs values for DCP and TCE photodechlorination by Fe/TiO2 in the presence of 20-100 μM Ni(II) were 30.4-136 and 13.2-192 times greater, respectively, when compared with those in the dark. Electron spin resonance analysis showed that the photo-generated electron-hole pairs could be effectively separated through Ni ions cycling, leading to the improvement of electron transfer efficiency of TCE and DCP by Fe/TiO2.  相似文献   

10.
11.
The fate of Ti was examined in an activated sludge plant serving over 200,000 people. These studies revealed a decrease of 30 to 3.2 μg/L of Ti < 0.45 μm from influent to effluent and a calculated Ti presence of 305 mg/kg DW in wasted sludge. Thus, using sludge as a fertiliser would result in a predicted deposition of up to 250 mg/m2 of Ti to soil surfaces using a recommended maximal agricultural application rate. Given the major use of TiO2 in many industrial and domestic applications where loss to the sewer is possible, this measured Ti was presumed to have been largely TiO2, a proportion of which will be nanoparticle sized. To assess the behaviour of engineered nanoparticle (ENP) TiO2 in sewage and toxicology studies, Optisol (Oxonica Materials Ltd) and P25 (Evonik Industries AG), which are representative of forms used in sunscreen and cosmetic products, were used. These revealed a close association of TiO2 ENPs with activated sludge. Using commercial information on consumption, and removal rates for sewage treatment, predictions were made for river water concentrations for sunscreen TiO2 ENPs for the Anglian and Thames regions in Southern England. The highest predicted value from these exercises was 8.8 μg/L for the Thames region in which it was assumed that one in four people used the recommended application of sunscreen during a low flow (Q95) period. Ecotoxicological studies using potentially vulnerable species indicated that 1000 μg/L TiO2 ENP did not affect the viability of a mixed community of river bacteria in the presence of UV light. Direct exposure to TiO2 ENPs did not impair the immuno-effectiveness of earthworm coelomocyte cells at concentrations greatly above those predicted for sewage sludge.  相似文献   

12.
High arsenic groundwater in the Quaternary aquifers of Datong Basin, northern China contain As up to 1820 µg/L and the high concentration plume is located in the slow flowing central parts of the basin. In this study we used hydrochemical data and sulfur isotope ratios of sulfate to better understand the conditions that are likely to control arsenic mobilization. Groundwater and spring samples were collected along two flow paths from the west and east margins of the basin and a third set along the basin flow path. Arsenic concentrations range from 68 to 670 µg/L in the basin and from 3.1 to 44 µg/L in the western and eastern margins. The margins have relatively oxidized waters with low contents of arsenic, relatively high proportions of As(V) among As species, and high contents of sulfate and uranium. By contrast, the central parts of the basin are reducing with high contents of arsenic in groundwater, commonly with high proportions of As(III) among As species, and low contents of sulfate and uranium. No statistical correlations were observed between arsenic and Eh, sulfate, Fe, Mn, Mo and U. While the mobility of sulfate, uranium and molybdenum is possibly controlled by the change in redox conditions as the groundwater flows towards central parts of the basin, the reducing conditions alone cannot account for the occurrence of high arsenic groundwater in the basin but it does explain the characteristics of arsenic speciation. With one exception, all the groundwaters with As(III) as the major As species have low Eh and those with As(V) have high Eh. Reductive dissolution of Fe-oxyhydroxides or reduction of As(V) are consistent with the observations, however no increase in dissolved Fe concentration was noted. Furthermore, water from the well with the highest arsenic was relatively oxidizing and contained mostly As(V). From previous work Fe-oxyhydroxides are speculated to exist as coatings rather than primary minerals.The wide range of δ34S[SO4] values (from − 2.5 to + 36.1‰) in the basin relative to the margins (from + 8‰ to + 15‰) indicate that sulfur is undergoing redox cycling. The highly enriched values point to sulfate reduction that was probably mediated by bacteria. The presence of monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) is also evidence of microbial reactions. The depleted signatures indicate that some oxidation of depleted sulfide occurred in the basin. It must be noted that the samples with depleted sulfur isotope values have very low sulfate concentrations and therefore even a small amount of sulfide oxidation will bias the ratio. No significant correlation was observed between δ34S[SO4] values and total arsenic contents when all the samples were considered. However, the wells in the central basin do appear to become enriched in δ34S[SO4] as arsenic concentration increases. Although there is evidence for sulfate reduction, it is clear that sulfate reduction does not co-precipitate or sequester arsenic. The one sample with high arsenic that is oxidizing cannot be explained by oxidation of pyrite and is likely an indication that there are multiple redox zones that control arsenic speciation but not necessarily its mobilization and contradict the possibility that Fe-oxyhydroxides sorb appreciable amounts of arsenic in this study area. It is evident that this basin like other two young sedimentary basins (Huhhot and Hetao in Inner Mongolia) of northern China with high arsenic groundwater is transporting arsenic at a very slow rate. The data are consistent with the possibility that the traditional models of arsenic mobilization, namely reductive dissolution of Fe-oxyhydroxides, reduction of As(V) to more mobile As(III), and bacteria mediated reactions, are active to varying degrees. It is also likely that different processes control arsenic mobilization at different locations of the basin and more detailed studies along major flow paths upgradient of the high arsenic aquifers will shed more light on the mechanisms.  相似文献   

13.
Electrochemical advanced oxidation processes (EAOPs) are used to chemically burn non biodegradable complex organic compounds that are present in polluted effluents. A common approach involves the use of TiO2 semiconductor substrates as either photocatalytic or photoelectrocatalytic materials in reactors that produce a powerful oxidant (hydroxyl radical) that reacts with pollutant species. In this context, the purpose of this work is to develop a new TiO2 based photoanode using an optic fiber support. The novel arrangement of a TiO2 layer positioned on top of a surface modified optical fiber substrate, allowed the construction of a photoelectrochemical reactor that works on the basis of an internally illuminated approach. In this way, a semi-conductive optical fiber modified surface was prepared using 30 μm thickness SnO2:Sb films on which the photoactive TiO2 layer was electrophoretically deposited. UV light transmission experiments were conducted to evaluate the transmittance along the optical fiber covered with SnO2:Sb and TiO2 showing that 43% of UV light reached the optical fiber tip. With different illumination configurations (external or internal), it was possible to get an increase in the amount of photo-generated H2O2 close to 50% as compared to different types of TiO2 films. Finally, the electro-Fenton photoelectrocatalytic Oxidation process studied in this work was able to achieve total color removal of Azo orange II dye (15 mg L−1) and a 57% removal of total organic carbon (TOC) within 60 min of degradation time.  相似文献   

14.
Due to the active development and application of nanotechnology, engineered nanomaterials (ENMs) are becoming a new class of environmental pollutants that may significantly impact the environment and human health. While many toxicity investigations have been conducted, there is little information about the synergistic effect of ENMs and other toxic compounds in the environment. In order to extend this knowledge, the combined effect of TiO2 nanoparticles (n-TiO2) and As(V) were investigated. High concentrations of As(V) can accumulate on the n-TiO2 surface. Cultured Ceriodaphnia dubia (C. dubia) species were used to examine the synergistic toxic effect through exposure to 1) n-TiO2 suspensions, 2) As(V) solutions, and 3) mixtures of n-TiO2 and As(V) suspensions. Results showed that n-TiO2 alone was not toxic when the concentration was less than 400 mg/L and that the 24-hour median lethal concentration (LC50) of As(V) alone was 3.68 ± 0.22 mg/L. However, in the presence of low concentrations of n-TiO2, the toxicity of As(V) increased significantly. At the same initial As(V) concentration, the toxicity of n-TiO2 first increased, reached a maximum, and then decreased with an increase in n-TiO2 concentration. Hydrodynamic size and sorption capacity were most important parameters for toxicity.  相似文献   

15.
This article examines the oxidative disposal of Prozac® (also known as Fluoxetine, FXT) through several oxidative processes with and without UV irradiation: for example, TiO2 alone, O3 alone, and the hybrid methods comprised of O3 + H2O2 (PEROXONE process), TiO2 + O3 and TiO2 + O3 + H2O2 at the laboratory scale. Results show a strong pH dependence of the adsorption of FXT on TiO2 and the crucial role of adsorption in the whole degradation process. Photolysis of FXT is remarkable only under alkaline pH. The heterogeneous photoassisted process removes 0.11 mM FXT (initial concentration) within ca. 60 min with a concomitant 50% mineralization at pH 11 (TiO2 loading, 0.050 g L−1). The presence of H2O2 enhances the mineralization further to >70%. UV/ozonation leads to the elimination of FXT to a greater extent than does UV/TiO2: i.e., 100% elimination of FXT is achieved by UV/O3 in the first 10 min of reaction and almost 97% mineralization is attained under UV irradiation in the presence of H2O2. The hybrid configuration UV + TiO2 + O3 + H2O2 enhances removal of dissolved organic carbon (DOC) in ca. 30 min leaving, however, an important inorganic carbon (IC) content. In all cases, the presence of H2O2 improves the elimination of DOC, but not without a detrimental effect on the biodegradability of FXT owing to the low organic carbon content in the final treated effluent, together with significant levels of inorganic byproducts remaining. The photoassisted TiO2/O3 hybrid method may prove to be an efficient combination to enhance wastewater treatment of recalcitrant drug pollutants in aquatic environments.  相似文献   

16.
Zhengchao Xu  Shian Gao 《Water research》2010,44(19):5713-5721
Hydrous titanium dioxide (TiO2·xH2O) nanoparticles were synthesized by a low-cost one-step hydrolysis process with aqueous TiCl4 solution. These TiO2·xH2O nanoparticles ranged from 3 to 8 nm and formed aggregates with a highly porous structure, resulting in a large surface area and easy removal capability from aqueous environment after the treatment. Their effectiveness on the removal of As(III) (arsenite) from water was investigated in both laboratory and natural water samples. The adsorption capacity on As(III) of these TiO2·xH2O nanoparticles reached over 83 mg/g at near neutral pH environment, and over 96 mg/g at pH 9.0. Testing with a As(III) contaminated natural lake water sample confirmed the effectiveness of these TiO2·xH2O nanoparticles in removing As(III) from natural water. The high adsorption capacity of the TiO2·xH2O nanoparticles is related to the high surface area, large pore volume, and the presence of high affinity surface hydroxyl groups.  相似文献   

17.
W.A. Maher 《Water research》1985,19(7):933-934
Surface seawater samples from South Australian coastal locations were analysed for dissolved inorganic arsenic [As(III) + As(V)], arsenite [As(III)] and particulate arsenic.Dissolved inorganic arsenic concentrations ranged from 1.10 to 1.61 μg As l?1 (average 1.3 ± 0.1 μg As l?1) with 1.2–4.3% (average 2.7%) present as arsenite. Particulate arsenic concentrations were below the limit of detection (0.0006 μg As l?1) at most sampling stations.  相似文献   

18.
A study on the removal of arsenic from real life groundwater using iron–chitosan composites is presented. Removal of arsenic(III) and arsenic(V) was studied through adsorption at pH 7.0 under equilibrium and dynamic conditions. The equilibrium data were fitted to Langmuir adsorption models and the various model parameters were evaluated. The monolayer adsorption capacity from the Langmuir model for iron chitosan flakes (ICF) (22.47 ± 0.56 mg/g for As(V) and 16.15 ± 0.32 mg/g for As(III)) was found to be considerably higher than that obtained for iron chitosan granules (ICB) (2.24 ± 0.04 mg/g for As(V); 2.32 ± 0.05 mg/g for As(III)). Anions including sulfate, phosphate and silicate at the levels present in groundwater did not cause serious interference in the adsorption behavior of arsenate/arsenite. The column regeneration studies were carried out for two sorption–desorption cycles for both As(III) and As(V) using ICF and ICB as sorbents. One hundred and forty-seven bed volumes of As(III) and 112 bed volumes of As(V) spiked groundwater were treated in column experiments using ICB, reducing arsenic concentration from 500 to <10 μg/l. The eluent used for the regeneration of the spent sorbent was 0.1 M NaOH. The adsorbent was also successfully applied for the removal of total inorganic arsenic down to <10 μg/l from real life arsenic contaminated groundwater samples.  相似文献   

19.
The aim of the present work is to study the occupants' exposure to fine particulate concentrations in ten nightclubs (NCs) in Athens, Greece. Measurements of PM1 and PM2.5 were made in the outdoor and indoor environment of each NC. The average indoor PM1 and PM2.5 concentrations were found to be 181.77 μg m 3 and 454.08 μg m 3 respectively, while the corresponding outdoor values were 11.04 μg m 3 and 32.19 μg m 3. Ventilation and resuspension rates were estimated through consecutive numerical experiments with an indoor air quality model and were found to be remarkably lower than the minimum values recommended by national standards. The relative effects of the ventilation and smoking on the occupants' exposures were examined using multiple regression techniques. It was found that given the low ventilation rates, the effect of smoking as well as the occupancy is of the highest importance. Numerical evaluations showed that if the ventilation rates were at the minimum values set by national standards, then the indoor exposures would be reduced at the 70% of the present exposure values.  相似文献   

20.
A solar fluidized tubular photocatalytic reactor (SFTPR) with simple and efficient light collector was developed to degrade waste activated sludge (WAS) and simultaneously produce hydrogen. The photocatalyst was a TiO2 film doped by silver and silver compounds (AgX). The synthesized photocatalyst, AgX/TiO2, exhibited higher photocatalytic activity than TiO2 (99.5% and 30.6% of methyl orange removal, respectively). The installation of light collector could increase light intensity by 26%. For WAS treatment using the SFTPR, 69.1% of chemical oxygen demand (COD) removal and 7866.7 μmol H2/l-sludge of hydrogen production were achieved after solar photocatalysis for 72 h. The SFTPR could be a promising photocatalysis reactor to effectively degrade WAS with simultaneous hydrogen production. The results can also provide a useful base and reference for the application of photocatalysis on WAS degradation in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号