首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cation exchange during subsurface iron removal   总被引:1,自引:0,他引:1  
Subsurface iron removal (SIR), or in-situ iron removal, is an established treatment technology to remove soluble iron (Fe2+) from groundwater. Besides the adsorptive-catalytic oxidation theory, it has also been proposed that the injection of O2-rich water onsets the exchange of adsorbed Fe2+ with other cations, such as Ca2+ and Na+. In sand column experiments with synthetic and natural groundwater it was found that cation exchange (Na+-Fe2+) occurs during the injection-abstraction cycles of subsurface iron removal. The Fe2+ exchange increased at higher Na+ concentration in the injection water, but decreased in the presence of other cations in the groundwater. Field results with injection of elevated O2 concentrations (0.55 mM) showed increased Fe removal efficacy; the operational parameter V/Vi (abstraction volume with [Fe]<2 μM divided by the injection volume) increased from an average 7 to 16, indicating that not the exchangeable Fe2+ on the soil material is the limiting factor during injection, but it is the supply of O2 to the available Fe2+.  相似文献   

2.
The contribution of volatilization, sorption and transformation to the removal of 16 Pharmaceutical and Personal Care Products (PPCPs) in two lab-scale conventional activated sludge reactors, working under nitrifying (aerobic) and denitrifying (anoxic) conditions for more than 1.5 years, have been assessed. Pseudo-first order biological degradation rate constants (kbiol) were calculated for the selected compounds in both reactors. Faster degradation kinetics were measured in the nitrifying reactor compared to the denitrifying system for the majority of PPCPs. Compounds could be classified according to their kbiol into very highly (kbiol > 5 L gSS−1 d−1), highly (1 < kbiol < 5 L gSS−1 d−1), moderately (0.5 < kbiol < 1 L gSS−1 d−1) and hardly (kbiol < 0.5 L gSS−1 d−1) biodegradable.Results indicated that fluoxetine (FLX), natural estrogens (E1 + E2) and musk fragrances (HHCB, AHTN and ADBI) were transformed to a large extent under aerobic (>75%) and anoxic (>65%) conditions, whereas naproxen (NPX), ethinylestradiol (EE2), roxithromycin (ROX) and erythromycin (ERY) were only significantly transformed in the aerobic reactor (>80%). The anti-depressant citalopram (CTL) was moderately biotransformed under both, aerobic and anoxic conditions (>60% and >40%, respectively). Some compounds, as carbamazepine (CBZ), diazepam (DZP), sulfamethoxazole (SMX) and trimethoprim (TMP), manifested high resistance to biological transformation.Solids Retention Time (SRTaerobic >50 d and <50 d; SRTanoxic >20 d and <20 d) had a slightly positive effect on the removal of FLX, NPX, CTL, EE2 and natural estrogens (increase in removal efficiencies <10%). Removal of diclofenac (DCF) in the aerobic reactor was positively affected by the development of nitrifying biomass and increased from 0% up to 74%. Similarly, efficient anoxic transformation of ibuprofen (75%) was observed after an adaptation period of 340 d. Temperature (16-26 °C) only had a slight effect on the removal of CTL which increased in 4%.  相似文献   

3.
Contaminant removal from drinking water sources under reducing conditions conducive for the growth of denitrifying, arsenate reducing, and sulfate reducing microbes using a fixed-bed bioreactor may require oxygen-free gas (e.g., N2 gas) during backwashing. However, the use of air-assisted backwashing has practical advantages, including simpler operation, improved safety, and lower cost. A study was conducted to evaluate whether replacing N2 gas with air during backwashing would impact performance in a nitrate and arsenic removing anaerobic bioreactor system that consisted of two biologically active carbon reactors in series. Gas-assisted backwashing, comprised of 2 min of gas injection to fluidize the bed and dislodge biomass and solid phase products, was performed in the first reactor (reactor A) every two days. The second reactor (reactor B) was subjected to N2 gas-assisted backwashing every 3-4 months. Complete removal of 50 mg/L NO3 was achieved in reactor A before and after the switch from N2-assisted backwashing (NAB) to air-assisted backwashing (AAB). Substantial sulfate removal was achieved with both backwashing strategies. Prolonged practice of AAB (more than two months), however, diminished sulfate reduction in reactor B somewhat. Arsenic removal in reactor A was impacted slightly by long-term use of AAB, but arsenic removals achieved by the entire system during NAB and AAB periods were not significantly different (p > 0.05) and arsenic concentrations were reduced from approximately 200 μg/L to below 20 μg/L. These results indicate that AAB can be implemented in anaerobic nitrate and arsenic removal systems.  相似文献   

4.
Biological removal of arsenic pollution by soil fungi   总被引:2,自引:0,他引:2  
Fifteen fungal strains were isolated from arsenic contaminated (range 9.45-15.63 mg kg− 1) agricultural soils from the state of West Bengal, India. Five fungal strains were belonged to the Aspergillus and Trichoderma group each, however, remaining five were identified as the Neocosmospora, Sordaria, Rhizopus, Penicillium and sterile mycelial strain. All these fungal strains were cultivated on medium supplemented with 100, 500, 1000, 5000 and 10,000 mg l− 1 of sodium arsenate. After 30-day cultivation under laboratory conditions, radial growth of these strains was determined and compared with control. Toxicity and tolerance of these strains to arsenate were evaluated on the basis of tolerance index. Out of fifteen, only five fungal strains were found resistant and survived with tolerance index pattern as 0.956 (sterile mycelial strain) > 0.311 (Rhizopus sp.) > 0.306 (Neocosmospora sp.) > 0.212 (Penicillium sp.) > 0.189 (Aspergillus sp.) at 10,000 mg l− 1 of arsenate. The arsenic removal efficacy of ten fungal strains, tolerant to 5000 mg l− 1 arsenate, was also assayed under laboratory conditions for 21 days. All these strains were cultivated individually on mycological broth enriched with 10 mg l− 1 of arsenic. The initial and final pH of cultivating medium, fungal biomass and removal of arsenic by each fungal strain were evaluated. Fungal biomass of ten strains removed arsenic biologically from the medium which were ranged from 10.92 to 65.81% depending on fungal species. The flux of biovolatilized arsenic was determined indirectly by estimating the sum of arsenic content in fungal biomass and medium. The mean percent removal as flux of biovolatilized arsenic ranged from 3.71 to 29.86%. The most effective removal of arsenic was observed in the Trichoderma sp., sterile mycelial strain, Neocosmospora sp. and Rhizopus sp. fungal strains. These fungal strains can be effectively used for the bioremediation of arsenic-contaminated agricultural soils.  相似文献   

5.
Removal of phosphorus from solution using biogenic iron oxides   总被引:2,自引:0,他引:2  
Phosphorus removal by biogenic iron oxides was investigated, providing an initial characterization of a potentially regenerable iron-rich sorbent. The biogenic iron oxides were collected from a wetland ecosystem and were dominated by the sheaths of Leptothrix ochracea. Sorption kinetics followed a pseudo-1st order model (R2 = 0.998) with a rate constant of 0.154 ± 0.013 h−1. The Langmuir isotherm adequately described sorption for all samples (R2 = 0.923-0.981); the Freundlich model was a better fit for only one of four samples. Maximum phosphorus sorption estimated using the Langmuir parameter ranged from 46.9 ± 2.9 to 165.0 ± 21.2 mg P/g Fe and was similar to other iron-rich substrates. Maximum sorption normalized to total solids ranged from 10.8 ± 0.7 to 39.9 ± 3.2 mg P/g, which represented the highest published values for iron-rich substrates. The high sorption capacity with respect to both iron and solids warrants further evaluation of biogenic iron oxides as a substrate for phosphorus removal.  相似文献   

6.
The effects of hardness (Ca2+) and alkalinity (HCO3) on arsenic(V) removal from humic acid (HA)-deficient and HA-rich groundwater by zero-valent iron (Fe0) were investigated using batch experiments. Arsenic, in general, is removed from groundwater possibly by adsorption and co-precipitation with the iron corrosion products. However, in the co-presence of HCO3 and Ca2+, the removal rate of arsenic increased with increasing concentrations of either Ca2+ or HCO3. It was observed that the removal of arsenic was significantly enhanced by the formation of CaCO3 as a nucleation seed for the growth of large iron (hydr)oxide particles. In the co-existence of Ca2+, HCO3 and HA, the presence of HA diminished the positive role of Ca2+ due to the formation of Fe-humate complexes in solution and delaying of the formation of CaCO3. As a result, the formation of the large iron (hydr)oxide particles was inhibited in the earlier stage which, in turn, affected the removal of arsenic. However, after the formation of CaCO3 and the subsequent growth of such particles, the presence of large iron (hydr)oxide particles resulted in the rapid removing of arsenic and Fe-humate by adsorption and/or co-precipitation.  相似文献   

7.
Arsenic (As) is a toxic element frequently present in acid mine waters and effluents. Precipitation of trivalent arsenic sulphide in sulphate-reducing conditions at low pH has been studied with the aim of removing this hazardous element in a waste product with high As content. To achieve this, a 400 mL fixed-film column bioreactor was fed continuously with a synthetic solution containing 100 mg L−1 As(V), glycerol and/or hydrogen, at pH values between 2.7 and 5. The highest global As removal rate obtained during these experiments was close to 2.5 mg L−1 h−1. A switch from glycerol to hydrogen when the biofilm was mature induced an abrupt increase in the sulphate-reducing activity, resulting in a dramatic mobilisation of arsenic due to the formation of soluble thioarsenic complexes. A new analytical method, based on ionic chromatography, was used to evaluate the proportion of As present as thioarsenic complexes in the bioreactor. Profiles of pH, total As and sulphate concentrations suggest that As removal efficiency was linked to solubility of orpiment (As2S3) depending on pH conditions. Molecular fingerprints revealed fairly homogeneous bacterial colonisation throughout the reactor. The bacterial community was diverse and included fermenting bacteria and Desulfosporosinus-like sulphate-reducing bacteria. arrA genes, involved in dissimilatory reduction of As(V), were found and the retrieved sequences suggested that As(V) was reduced by a Desulfosporosinus-like organism. This study was the first to show that As can be removed by bioprecipitation of orpiment from acidic solution containing up to 100 mg L−1 As(V) in a bioreactor.  相似文献   

8.
Sun W  Sierra R  Field JA 《Water research》2008,42(17):4569-4577
In this study, denitrification linked to the oxidation of arsenite (As(III)) to arsenate (As(V)) was shown to be a widespread microbial activity in anaerobic sludge and sediment samples that were not previously exposed to arsenic contamination. When incubated with 0.5 mM As(III) and 10 mM NO3, the anoxic oxidation of As(III) commenced within a few days, achieving specific activities of up to 1.24 mmol As(V) formed g−1 volatile suspended solids d−1 due to growth (doubling times of 0.74-1.4 d). The anoxic oxidation of As(III) was partially to completely inhibited by 1.5 and 5 mM As(III), respectively. Inhibition was minimized by adding As(III) adsorbed onto activated aluminum (AA). The oxidation of As(III) was shown to be linked to the complete denitrification of NO3 to N2 by demonstrating a significantly enhanced production of N2 beyond the background endogenous production as a result of adding As(III)-AA to the cultures. The N2 production corresponded closely the expected stoichiometry of the reaction, 2.5 mol As(III) mol−1 N2-N. The oxidation of As(III) linked to the use of common-occurring nitrate as an electron acceptor may be an important missing link in the biogeochemical cycling of arsenic.  相似文献   

9.
Arsenic is naturally associated with gold mineralisation and elevated in some soils and mine waste around historical gold mining activity in Victoria, Australia. To explore uptake, arsenic concentrations in children's toenail clippings and household soils were measured, and the microdistribution and speciation of arsenic in situ in toenail clipping thin sections investigated using synchrotron-based X-ray microprobe techniques. The ability to differentiate exogenous arsenic was explored by investigating surface contamination on cleaned clippings using depth profiling, and direct diffusion of arsenic into incubated clippings. Total arsenic concentrations ranged from 0.15 to 2.1 µg/g (n = 29) in clipping samples and from 3.3 to 130 µg/g (n = 22) in household soils, with significant correlation between transformed arsenic concentrations (Pearson's r = 0.42, P = 0.023) when household soil was treated as independent. In clipping thin sections (n = 2), X-ray fluorescence (XRF) mapping showed discrete layering of arsenic consistent with nail structure, and irregular arsenic incorporation along the nail growth axis. Arsenic concentrations were heterogeneous at 10 × 10 µm microprobe spot locations investigated (< 0.1 to 13.3 µg/g). X-ray absorption near-edge structure (XANES) spectra suggested the presence of two distinct arsenic species: a lower oxidation state species, possibly with mixed sulphur and methyl coordination (denoted As≈ III(-S, -CH3)); and a higher oxidation state species (denoted As≈ V(-O)). Depth profiling suggested that surface contamination was unlikely (n = 4), and XRF and XANES analyses of thin sections of clippings incubated in dry or wet mine waste, or untreated, suggested direct diffusion of arsenic occurred under moist conditions. These findings suggest that arsenic in soil contributes to some systemic absorption associated with periodic exposures among children resident in areas of historic gold mining activity in Victoria, Australia. Future studies are required to ascertain if adverse health effects are associated with current levels of arsenic uptake.  相似文献   

10.
In a model feed channel for spiral-wound membranes the quantitative relationship of biomass and iron accumulation with pressure drop development was assessed. Biofouling was stimulated by the use of tap water enriched with acetate at a range of concentrations (1-1000 μg C l−1). Autopsies were performed to quantify biomass concentrations in the fouled feed channel at a range of Normalized Pressure Drop increase values (NPDi). Active biomass was determined with adenosinetriphosphate (ATP) and the concentration of bacterial cells with Total Direct Cell count (TDC). Carbohydrates (CH) were measured to include accumulated extracellular polymeric substances (EPS). The paired ATP and CH concentrations in the biofilm samples were significantly (p < 0.001; R2 = 0.62) correlated and both parameters were also significantly correlated with NPDi (p < 0.001). TDC was not correlated with the pressure drop in this study. The threshold concentration for an NPDi of 100% was 3.7 ng ATP cm−2 and for CH 8.1 μg CH cm−2. Both parameters are recommended for diagnostic membrane autopsy studies. Iron concentrations of 100-400 mg m−2 accumulated in the biofilm by adsorption were not correlated with the observed NPDi, thus indicating a minor role of Fe particulates at these concentrations in fouling of spiral-wound membrane.  相似文献   

11.
Arsenic (As) poisoning has become a worldwide public health concern. The skin is quite sensitive to As and skin lesions are the most common and earliest nonmalignant effects associated to chronic As exposure. In 2005-2007, a survey was carried out on surface and groundwater arsenic contamination and relationships between As exposure via the drinking water and related adverse health effects (melanosis and keratosis) on villagers resides on the banks of Manchar lake, southern part of Sindh, Pakistan. We screened the population from arsenic-affected villages, 61 to 73% population were identified patients suffering from chronic arsenic toxicity. The effects of As toxicity via drinking water were estimated by biological samples (scalp hair and blood) of adults (males and females), have or have not skin problem (n = 187). The referent samples of both genders were also collected from the areas having low level of As (< 10 μg/L) in drinking water (n = 121). Arsenic concentration in drinking water and biological samples were analyzed using electrothermal atomic absorption spectrometry. The range of arsenic concentrations in lake surface water was 35.2-158 μg/L, which is 3-15 folds higher than World Health Organization [WHO, 2004. Guidelines for drinking-water quality third ed., WHO Geneva Switzerland.]. It was observed that As concentration in the scalp hair and blood samples were above the range of permissible values 0.034-0.319 μg As/g for hair and < 0.5-4.2 μg/L for blood. The linear regressions showed good correlations between arsenic concentrations in water versus hair and blood samples of exposed skin diseased subjects (R2 = 0.852 and 0.718) as compared to non-diseased subjects (R2 = 0.573 and 0.351), respectively.  相似文献   

12.
Three tertiary-treated wastewater effluents were evaluated to determine the impact of wastewater quality (i.e. effluent organic matter (EfOM), nitrite, and alkalinity) on ozone (O3) decomposition and subsequent removal of 31 organic contaminants including endocrine disrupting compounds, pharmaceuticals, and personal care products. The O3 dose was normalized based upon total organic carbon (TOC) and nitrite to allow comparison between the different wastewaters with respect to O3 decomposition. EfOM with higher molecular weight components underwent greater transformation, which corresponded to increased O3 decomposition when compared on a TOC basis. Hydroxyl radical (OH) exposure, measured by parachlorobenzoic acid (pCBA), showed that limited OH was available for contaminant destruction during the initial stage of O3 decomposition (t < 30 s) due to the effect of the scavenging by the water quality. Advanced oxidation using O3 and hydrogen peroxide did not increase the net production of OH compared to O3 under the conditions studied. EfOM reactivity impacted the removal of trace contaminants when evaluated based on the O3:TOC ratio. Trace contaminants with second order reaction rate constants with O3 (kO3) > 105 M−1 s−1 and OH (kOH) > 109 M−1 s−1, including carbamazepine, diclofenac, naproxen, sulfamethoxazole, and triclosan, were >95% removed independent of water quality when the O3 exposure () was measurable (0-0.8 mg min/L). O3 exposure would be a conservative surrogate to assess the removal of trace contaminants that are fast-reacting with O3. Removal of contaminants with and kOH > 109 M−1 s−1, including atrazine, iopromide, diazepam, and ibuprofen, varied when O3 exposure could not be measured, and appeared to be dependent upon the compound specific kOH. Atrazine, diazepam, ibuprofen and iopromide provided excellent linear correlation with pCBA (R2 > 0.86) making them good indicators of OH availability.  相似文献   

13.
This paper reports the potential of heterogeneous photocatalysis as an advanced oxidation technology for removal of toluene from air using TiO2 as a photocatalyst in building materials. First, the photocatalytic activity of two types of TiO2 containing building materials, i.e. roofing tiles and corrugated sheets, has been investigated at ambient conditions (T=25.0 °C; relative humidity RH=47%; toluene inlet concentration [TOL]in=17–35 ppbv). Toluene removal efficiencies up to 63% were observed at a gas residence time (τ) of 17 s. Second, the effect of RH (1–77%), [TOL]in (23–465 ppmv) and τ (17–115 s) on toluene removal has been systematically investigated using TiO2 containing roofing tiles as photocatalytic building materials. Results revealed lower toluene removal efficiencies at higher RH and [TOL]in, whereas a positive effect was observed with increased τ. Under optimal conditions, toluene removal efficiencies up to 78±2% and elimination rates higher than 100 mg h−1 m−2 roofing tile were obtained. A decline in photocatalytic activity by a factor of 2 was observed after operation at gas residence times shorter than 69 s and [TOL]in higher than 76 ppmv. Washing the building materials with deionized water, simulating rainfall, could partially (i.e. by a factor 1.3) regenerate the catalyst activity.  相似文献   

14.
Groundwater and core sediments of two boreholes (to a depth of 50 m) from the Chapai-Nawabganj area in northwestern Bangladesh were collected for arsenic concentration and geochemical analysis. Groundwater arsenic concentrations in the uppermost aquifer (10-40 m of depth) range from 2.8 μg L−1 to 462.3 μg L−1. Groundwater geochemical conditions change from oxidized to successively more reduced, higher As concentration with depth. Higher sediment arsenic levels (55 mg kg−1) were found within the upper 40 m of the drilled core samples. X-ray absorption near-edge structure spectroscopy was employed to elucidate the arsenic speciation of sediments collected from two boreholes. Environmental scanning electron microscopy and transmission X-ray microscopy were used to investigate the characteristics of FeOOH in sediments which adsorb arsenic. In addition, a pH-Eh diagram was drawn using the Geochemist's Workbench (GWB) software to elucidate the arsenic speciation in groundwater. The dominant groundwater type is Ca-HCO3 with high concentrations of As, Fe and Mn but low levels of NO3 and SO42−. Sequential extraction analysis reveals that Mn and Fe hydroxides and organic matter are the major leachable solids carrying As. High levels of arsenic concentration in aquifers are associated with fine-grained sediments. Fluorescent intensities of humic substances indicate that both groundwater and sediments in this arsenic hotspot area contain less organic matter compared to other parts of Bengal basin. Statistical analysis clearly shows that As is closely associated with Fe and Mn in sediments while As is better correlated with Mn in groundwater. These correlations along with results of sequential leaching experiments suggest that reductive dissolution of MnOOH and FeOOH mediated by anaerobic bacteria represents an important mechanism for releasing arsenic into the groundwater.  相似文献   

15.
A significant amount of nitrogen entering river basins is denitrified in riparian zones. The aim of this study was to evaluate the influence of nitrate and carbon concentrations on the kinetic parameters of nitrate reduction as well as nitrous oxide emissions in river sediments in a tributary of the Marne (the Seine basin, France). In order to determine these rates, we used flow-through reactors (FTRs) and slurry incubations; flow-through reactors allow determination of rates on intact sediment slices under controlled conditions compared to sediment homogenization in the often used slurry technique. Maximum nitrate reduction rates (Rm) ranged between 3.0 and 7.1 μg N g−1 h−1, and affinity constant (Km) ranged from 7.4 to 30.7 mg N-NO3 L−1. These values were higher in slurry incubations with an Rm of 37.9 μg N g−1 h−1 and a Km of 104 mg N-NO3 L−1. Nitrous oxide production rates did not follow Michaelis-Menten kinetics, and we deduced a rate constant with an average of 0.7 and 5.4 ng N g−1 h−1 for FTR and slurry experiments respectively. The addition of carbon (as acetate) showed that carbon was not limiting nitrate reduction rates in these sediments. Similar rates were obtained for FTR and slurries with carbon addition, confirming the hypothesis that homogenization increases rates due to release of and increasing access to carbon in slurries. Nitrous oxide production rates in FTR with carbon additions were low and represented less than 0.01% of the nitrate reduction rates and were even negligible in slurries. Maximum nitrate reduction rates revealed seasonality with high potential rates in fall and winter and low rates in late spring and summer. Under optimal conditions (anoxia, non-limiting nitrate and carbon), nitrous oxide emission rates were low, but significant (0.01% of the nitrate reduction rates).  相似文献   

16.
W.H. Chin  J.L. Harris 《Water research》2009,43(16):3940-3947
Greywater treatment by UVC/H2O2 was investigated with regard to the removal of chemical oxygen demand (COD). A COD reduction from 225 to 30 mg l−1 (overall removal of 87%) was achieved after settling overnight and subsequent irradiation for 3 h with 10 mM H2O2. Most of the contaminants were removed by oxidation since only 13% COD was removed by settlement.The removal of COD in the greywater followed a second-order kinetic equation, r = 0.0637[COD][H2O2], up to 10 mM H2O2. A slightly enhanced COD removal was observed at the initial pH of 10 compared with pH 3 and 7. This was attributed to the dissociation of H2O2 to O2H. The treatment was not affected by total concentration of carbonate (cT) of at least 3 mM, above which operation between pH 3 and 5 was essential. The initial biodegradability of the settled greywater (as BOD5:COD) was 0.22. After 2 h UVC/H2O2 treatment, a higher proportion of the residual contaminants was biodegradable (BOD5:COD = 0.41) which indicated its potential as a pre-treatment for a biological process.  相似文献   

17.
Vanadium (V) when ingested from drinking water in high concentrations (> 15 μg L− 1) is a potential health risk and is on track to becoming a regulated contaminant. High concentrations of V have been documented in lead corrosion by-products as Pb5(V5+O4)3Cl (vanadinite) which, in natural deposits is associated with iron oxides/oxyhydroxides, phases common in iron pipe corrosion by-products. The extent of potential reservoirs of V in iron corrosion by-products, its speciation, and mechanism of inclusion however are unknown. The aim of this study is to assess these parameters in iron corrosion by-products, implementing synchrotron-based μ-XRF mapping and μ-XANES along with traditional physiochemical characterization. The morphologies, mineralogies, and chemistry of the samples studied are superficially similar to typical iron corrosion by-products. However, we found V present as discrete grains of Pb5(V5+O4)3Cl likely embedded in the surface regions of the iron corrosion by-products. Concentrations of V observed in bulk XRF analysis ranged from 35 to 899 mg kg− 1. We calculate that even in pipes with iron corrosion by-products with low V concentration, 100 mg kg− 1, as little as 0.0027% of a 0.1-cm thick X 100-cm long section of that corrosion by-product needs to be disturbed to increase V concentrations in the drinking water at the tap to levels well above the 15 μg L− 1 notification level set by the State of California and could adversely impact human health. In addition, it is likely that large reservoirs of V are associated with iron corrosion by-products in unlined cast iron mains and service branches in numerous drinking water distribution systems.  相似文献   

18.
The 40-year long period of heavy industrialization in Central Europe (1950-1990) was accompanied by burning of arsenic-rich lignite in thermal power plants, and accumulation of anthropogenic arsenic in forest soils. There are fears that retreating acidification may lead to arsenic mobilization into drinking water, caused by competitive ligand exchange. We present monthly arsenic concentrations in surface runoff from 12 headwater catchments in the Czech Republic for a period of 13 years (1996-2008). The studied area was characterized by a north-south gradient of decreasing pollution. Acidification, caused mainly by SOx and NOx emissions from power plants, has been retreating since 1987. Between 1996 and 2003, maximum arsenic concentrations in runoff did not change, and were < 1 ppb in the rural south and < 2 ppb in the industrial north. During the subsequent two years, 2004-2005, maximum arsenic concentrations in runoff increased, reaching 60% of the drinking water limit (10 ppb). Starting in 2006, maximum arsenic concentrations returned to lower values at most sites. We discuss three possible causes of the recent arsenic concentration maximum in runoff. We rule out retreating acidification and a pulse of high industrial emission rates as possible controls. The pH of runoff has not changed since 1996, and is still too low (< 6.5) at most sites for an As-OH ligand exchange to become significant. Elevated arsenic concentrations in runoff in 2004-2005 may reflect climate change through changing hydrological conditions at some, but not all sites. Dry conditions may result in elevated production of DOC and sulfur oxidation in the soil. Subsequent wet conditions may be accompanied by acidification leading to faster dissolution of arsenic-bearing sulfides, dissolution of arsenic-bearing Fe-oxyhydroxides, and elevated transport of arsenic sorbed on organic matter. Anaerobic domains exist in normally well-aerated upland soils for hours-to-days following precipitation events.  相似文献   

19.
Liu Ye  Maite Pijuan 《Water research》2010,44(9):2901-4682
Nitrite/Free Nitrous Acid (FNA) has previously been shown to inhibit aerobic and anoxic phosphate uptake by polyphosphate accumulating organisms (PAOs). The inhibitory effect of FNA on the aerobic metabolism of Glycogen Accumulating Organisms (GAOs) is investigated. A culture highly enriched (92 ± 3%) in Candidatus Competibacter phosphatis (hereafter called Competibacter) was used. The experimental data strongly suggest that FNA likely directly inhibits the growth of Competibacter, with 50% inhibition occurring at 1.5 × 10−3 mgN-HNO2/L (equivalent to approximately 6.3 mgN-NO2/L at pH 7.0). The inhibition is well described by an exponential function. The organisms ceased to grow at an FNA concentration of 7.1 × 10−3 mgN-HNO2/L. At this FNA level, glycogen production, another anabolic process performed by GAOs in parallel to growth, decreased by 40%, while the consumption of polyhydroxyalkanoates (PHAs), the intracellular carbon and energy sources for GAOs, decreased by approximately 50%. FNA likely inhibited either or both of the PHA oxidation and glycogen production processes, but to a much less extent in comparison to the inhibition on growth. The comparison of these results with those previously reported on PAOs suggest that FNA has much stronger inhibitory effects on the aerobic metabolism of PAOs than on GAOs, and may thus provide a competitive advantage to GAOs over PAOs in enhanced biological phosphorus removal (EBPR) systems.  相似文献   

20.
A full-scale passive treatment system (PTS) was commissioned in 2003 to treat two net-acidic coal mine water discharges in the Durham coalfield, UK. The principal aim of the PTS was to decrease concentrations of iron (< 177 mg L1) and aluminium (< 85 mg L1) and to increase pH (> 3.2) and alkalinity (≥ 0 mg L1 CaCO3 eq). Secondary objectives were to decrease zinc (< 2.8 mg L1), manganese (< 20.5 mg L1) and sulfate (< 2120 mg L1). Upon treatment, water qualities were improved by 84% in the case of Fe, 87% Al, 83% acidity, 51% Zn, 23% Mn and 29% SO42. Alkalinity (74%) and pH (95% as H+) were increased. Area adjusted removal rates (Fe = 1.49 ± 0.66 g d1 m2; acidity = 6.7 ± 4.9 g d1 m2) were low compared to design criteria, mainly due to load limitation. Disregarding seasonality effects, acidity removal and effluent pH were stable over time. A substantial temporal decrease in calcium and alkalinity generation suggests that limestone is increasingly armoured. Once pH is no longer buffered by the carbonate system, metals could be remobilized, putting treatment efficiency at risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号