首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
聚合物锂离子电池具有重量轻,比能量高,安全性能好等优点,是本世纪发展的理想能源。锂离子电池用聚合物电解质的研究包括全固态聚合物电解质(SPE),凝胶聚合物电解质(GPE)和复合聚合物电解质(CPE)。本文重点综述了纳米复合聚合物电解质在锂离子电池中的应用研究进展及展望。  相似文献   

2.
全固态锂离子电池因其容量更大、质量更轻、安全性能更高而受到广泛关注。全固态锂离子电池技术开发的难点和重点在于固态电解质,要解决的首要问题是提高电导率,这也是全固态锂离子电池迄今还没有能够大规模应用的主要原因。本文将介绍近年来全固态锂离子电池的一些研究情况。  相似文献   

3.
辛玉池 《功能材料》2021,52(4):4018-4022
以共聚物PEDOT-co-PEG作为锂金属阳极的表面改性层,采用磷酸铁锂复合阳极和“石榴石型”物质以及聚合氧乙烷聚合物组成的固体电解质制备了全固态锂离子电池。采用SEM分析了锂金属充电-放电反复操作后的形态学改变;采用电化学组抗谱试验研究了改性后的锂金属以及复合固体电解质接触面的稳定性并对全固态锂离子电池的充电-放电性能和界面稳定性进行了研究。结果表明,未改性的锂金属在固态电池充电-放电过程中会生成锂枝晶,从而导致全固态锂离子电池的高电流密度容量快速衰变;“石榴石型”物质以及聚合氧乙烷聚合物组成的固体电解质与改性后的金属锂具有良好的接触面,从而扼制锂枝晶的形成,提高全固态锂离子电池的机械性能;在PEDOT-co-PEG共聚物改性锂金属后,全固态锂离子电池的平稳性显著提高,且容量减弱放缓。  相似文献   

4.
综述了固态锂离子电池用的玻璃及玻璃陶瓷固体电解质材料研究现状, 包括氧化物、硫化物及氧硫化物玻璃固体电解质材料和氧化物、硫化物玻璃陶瓷固体电解质材料的电化学性能, 并讨论了材料的结构和形貌对其电化学性能的影响, 以及全固态电池的性能, 最后对全固态锂离子电池的应用进行了展望.  相似文献   

5.
全固态薄膜锂离子电池是锂离子电池的最新研究领域,薄膜化的负极、电解质材料是全固态薄膜锂离子电池的重要组成部分.主要对碳基材料、锡基材料、硅基材料,合金等全固态薄膜锂离子电池负极材料和电解质薄膜材料近几年来的研究状况进行了综述,并展望了其发展趋势.  相似文献   

6.
电解质是锂离子电池的重要组成部分,其电化学性能和热稳定性是影响电池安全性能的重要因素.简要介绍了商用锂离子电池电解质的性质以及由其引起的安全问题,从替代电解质材料和电解质添加剂两个方面综述了高安全性锂离子电池电解质的研究现状,着重阐述了离子液体、聚合物电解质、新型锂盐、成膜添加剂和阻燃添加剂等对锂离子电池安全性能提高的最新进展,展望了锂离子电解液的发展方向.  相似文献   

7.
锂盐是获得安全性能良好的锂离子二次电池的重要因素。聚合物锂盐具有高电导率、宽电化学窗口、良好热稳定性和电化学稳定性,以及在全固态锂离子电池中的应用引起了国内外研究者的关注。文中分析了聚合物锂盐的结构与电池性能之间的关系,包括结构对材料的热稳定性、力学性能、锂离子迁移数、离子电导率和电化学窗口等的影响。总结了聚合物锂盐的合成方法,综述了均聚物型、共聚物型和离子液体型等具有代表性的聚合物锂盐在锂离子电池电解质中的应用研究进展,并对未来新型锂盐的研究方法及发展方向进行了展望。  相似文献   

8.
锂盐是获得安全性能良好的锂离子二次电池的重要因素。聚合物锂盐具有高电导率、宽电化学窗口、良好热稳定性和电化学稳定性,以及在全固态锂离子电池中的应用引起了国内外研究者的关注。文中分析了聚合物锂盐的结构与电池性能之间的关系,包括结构对材料的热稳定性、力学性能、锂离子迁移数、离子电导率和电化学窗口等的影响。总结了聚合物锂盐的合成方法,综述了均聚物型、共聚物型和离子液体型等具有代表性的聚合物锂盐在锂离子电池电解质中的应用研究进展,并对未来新型锂盐的研究方法及发展方向进行了展望。  相似文献   

9.
综述了二次锂离子电池聚合物电解质的最新研究进展,对不同类型的聚合物电解质按其基体进行分类,包括常见的几种聚合物基体以及近年来发展起来的几种新型聚合物基体。对于每类基体相关的研究成果,主要关注的是电化学性能。对一些性能优异的聚合物电解质体系及其相应的制备方法,给出了较为全面的概述。与使用液体有机电解质的二次锂离子电池相比...  相似文献   

10.
锂离子电池作为重要的能量储存元件在消费类电子产品、电动汽车和可再生能源存储等领域具有广泛的应用。传统液态电解质锂离子电池受到能量密度低、安全性差等诸多缺陷的限制,采用固态电解质替代液态电解质制备新型固态锂离子电池目前备受关注。PEO基固态聚合物电解质由于其设计简单、易于制造、使用安全等优点已被认为是替代传统液体电解质的首选。介绍了当前PEO基聚合物电解质的主要研究种类、特点和性能;阐述了锂离子在PEO基聚合物电解质中的导电机制;分析了与PEO络合的锂盐种类对聚合物电解质的电导率的影响规律;在此基础上提出了几种改善PEO基聚合物电解质性能的措施和方法。  相似文献   

11.
Li metal is the most ideal anode material to assemble rechargeable batteries with high energy density. However, nonuniform Li-ion flux during repeated Li plating and stripping leads to continuous Li dendrite growth and dead Li formation, which causes safety risks and short lifetime and thus impedes the commercialization of Li metal batteries. Here, parallelly aligned holey nanosheets on a Li metal anode are reported to simultaneously redistribute the Li-ion flux in the electrolyte and in the solid-electrolyte interphase, which allows uniform Li-ion distribution as well as fast Li-ion diffusion for reversible Li plating and stripping. With holey MgO nanosheets as an example, the protected Li anodes achieve Coulombic efficiency of ≈99% and ultralong-term reversible Li plating/stripping over 2500 h at a high current density of 10 mA cm−2. A full-cell battery, using the protected anode, a 4 V Li-ion cathode, and a commercial carbonate electrolyte, shows capacity retention of 90.9% after 500 cycles.  相似文献   

12.
Owing to the present exponential development of portable consumer electronics and to the increasing concern about the environment, new energy sources are required that provide more energy in the same volume and/or mass. Within a short period of time, less than three years, many changes in the area of rechargeable batteries for the consumer market have occurred, along with the emergence of several new technologies. The ubiquitous Ni? Cd cells, which are environmentally unfriendly because of the toxicity of Cd, will be replaced by Ni-metal hydride, rocking-chair lithium (or Li-ion), and lithium polymer electrolyte rechargeable cells. This paper reviews recent advances in the field of Li-ion rechargeable batteries.  相似文献   

13.
This study examined the properties of 1 wt.% vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and diphenyl octyl phosphate (DPOF) additive electrolytes as a promising way of beneficially improving the surface and cell resistance of Li-ion batteries. Surface film formation on the negative and positive electrodes was analyzed by electrochemical impedance spectroscopy (EIS), Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM). In conclusion, EIS, FT-IR spectroscopy and SEM results confirmed that DPOF is an excellent additive to the electrolyte in the Li-ion batteries due to the improved co-intercalation of the solvent molecules.  相似文献   

14.
Lithium (Li) metal is a promising candidate as the anode for high-energy-density solid-state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid-state Li metal batteries (SSLBs). Here, it is reported that infusing garnet-type solid electrolytes (GSEs) with the air-stable electrolyte Li3PO4 (LPO) dramatically reduces the interfacial resistance to ≈1 Ω cm2 and achieves a high critical current density of 2.2 mA cm−2 under ambient conditions due to the enhanced interfacial stability to the Li metal anode. The coated and infused LPO electrolytes not only improve the mechanical strength and Li-ion conductivity of the grain boundaries, but also form a stable Li-ion conductive but electron-insulating LPO-derived solid-electrolyte interphase between the Li metal and the GSE. Consequently, the growth of Li dendrites is eliminated and the direct reduction of the GSE by Li metal over a long cycle life is prevented. This interface engineering approach together with grain-boundary modification on GSEs represents a promising strategy to revolutionize the anode–electrolyte interface chemistry for SSLBs and provides a new design strategy for other types of solid-state batteries.  相似文献   

15.
一种用于锂离子电池的无机复合隔膜   总被引:1,自引:0,他引:1  
为了替代传统的聚烯烃微孔膜,对用于锂离子电池的Al2O3/SiO2/PAN (聚丙烯腈)复合隔膜进行了研究。复合膜具有高度多孔性和良好液体电解液湿润性。由于高的毛细吸附作用,通过吸附液态电解液,膜极易传导锂离子。膜中Al2O3/SiO2的两性特征,将电解液中的酸性HF(氟化氢)消耗掉,而HF作为现在锂离子电池所用电解液中的杂质是不可避免的。复合膜作为隔膜制备的碳/正极材料锂离子电池不仅具有优良的容量保持性、高温安全性,也显示出良好的倍率放电性和耐过充电保护性能。  相似文献   

16.
Solid-state Li-ion batteries (SSLBs) are promising next-generation energy storage devices with high energy density and enhanced safety. The solid-state electrolyte (SSE) is a key component for delivering the desired electrochemical performance characteristics. This article provides a brief review of the discovery, synthesis, structure, ion-conduction mechanism, and application of LGPS-type and garnet-type Li ion conductors as two representative SSEs, aiming to extract principles for the future design and discovery of favourable solid-state Li-ion electrolytes for SSLBs. Recent advances in strategies to address the SSLB challenges are also discussed. Finally, a perspective on the future research directions of SSLBs is provided.  相似文献   

17.
Solid-state Li-ion batteries employing a metallic lithium anode in conjunction with an inorganic solid electrolyte (ISE) are expected to offer superior energy density and cycle life. The realization of these metrics critically hinges on the simultaneous optimization of the ISE and the two electrode/electrolyte interfaces. In this Opinion article, we provide an overview of the materials and interfacial challenges that limit the performance of solid-state lithium metal batteries (SSLMBs). Owing to the importance of the Li/ISE interface, we dedicate a large section of this article to discuss the mechanistic aspects of lithium deposition at the Li/ISE interface. We further discuss a few recently proposed mechanisms that rationalize the growth of lithium through ISEs. We conclude our review with a brief discussion on the anode-free approach for fabricating SSLMBs where metallic lithium is generated in-situ from pre-lithiated cathodes.  相似文献   

18.
This study demonstrates the formation of a flexible and free-standing carbon nanotube-copper oxide-poly(vinylidene fluoride) (CNT-Cu(2) O-PVDF) nanocomposite and its application as an electrode-separator material for Li-ion batteries. Binder-free hybrid electrodes are obtained by conformally coating CNTs with Cu(2) O via electrodeposition and then embedding the resulting architecture into a porous poly(vinylidene fluoride-hexafluoropropylene) PVDF-HFP-SiO(2) polymer electrolyte membrane. The synergistic presence of high-capacity transition metal oxides and conductive CNTs results in twice the reversible areal capacity of 2.3 mAh cm(-2) as compared to 1.2 mAh cm(-2) for pure CNTs.  相似文献   

19.
Jang BZ  Liu C  Neff D  Yu Z  Wang MC  Xiong W  Zhamu A 《Nano letters》2011,11(9):3785-3791
Herein reported is a fundamentally new strategy for the design of high-power and high energy-density devices. This approach is based on the exchange of lithium ions between the surfaces (not the bulk) of two nanostructured electrodes, completely obviating the need for lithium intercalation or deintercalation. In both electrodes, massive graphene surfaces in direct contact with liquid electrolyte are capable of rapidly and reversibly capturing lithium ions through surface adsorption and/or surface redox reaction. These devices, based on unoptimized materials and configuration, are already capable of storing an energy density of 160 Wh/kg(cell), which is 30 times higher than that (5 Wh/kg(cell)) of conventional symmetric supercapacitors and comparable to that of Li-ion batteries. They are also capable of delivering a power density of 100 kW/kg(cell), which is 10 times higher than that (10 kW/kg(cell)) of supercapacitors and 100 times higher than that (1 kW/kg(cell)) of Li-ion batteries.  相似文献   

20.
Li-O2 and Li-S batteries with high energy storage   总被引:1,自引:0,他引:1  
Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号