首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 667 毫秒
1.
以苯酚为萃取剂,采用萃取精馏对甲基环己烷(MCH)-甲苯(MB)物系进行分离,比较了常规萃取精馏工艺流程和差压热耦合萃取精馏工艺流程;采用Aspen Plus化工流程模拟软件对萃取精馏工艺分离MCH-MB物系进行了模拟计算,考察了差压热耦合萃取精馏工艺中萃取剂进料位置、原料进料位置、萃取剂与原料的摩尔比(溶剂比)、回流比和压缩比等参数对MCH产品纯度及工艺能耗的影响。模拟得到差压热耦合萃取精馏塔优化的操作参数:萃取剂进料位置为第6块理论板,原料进料位置为第4块理论板,溶剂比为2.95,回流比为6,压缩比为12。模拟结果表明,差压热耦合萃取精馏工艺节能效果显著,比常规萃取精馏工艺可节能74.97%,得到MCH产品的含量可达99.54%(x)。  相似文献   

2.
利用Aspen Plus流程模拟软件对苯-异丙醇共沸体系进行了热集成变压精馏工艺的分离模拟,采用NRTL-RK活度系数方程作为物性计算模型.确定了热集成变压精馏的压力、工艺流程,分析了进料板位置、回流比等操作参数对分离过程的影响.最佳工艺参数为:常压塔压强采用压强为101.3 kPa,30块理论板数,第15块板进料,回...  相似文献   

3.
基于乙腈和正丙醇二元共沸特性的分析,提出变压精馏分离乙腈和正丙醇共沸物的工艺。利用Aspen Plus软件,以Wilson模型为物性计算方法对分离过程进行模拟,以再沸器总热负荷最低为优化目标,分析高压塔和常压塔理论板数、回流比和进料位置对再沸器总热负荷的影响。结果表明,变压精馏能够实现乙腈和正丙醇的有效分离,两者质量分数均为99.90%。利用高压塔塔顶气相潜热作常压塔塔釜再沸器热源进行热量集成,热集成变压精馏相比于传统变压精馏再沸器热负荷节能28.43%,冷凝器热负荷节能31.95%。与以N-甲基吡咯烷酮为萃取剂的萃取精馏工艺相比,热集成变压精馏工艺更适合乙腈和正丙醇共沸物的分离。  相似文献   

4.
针对工业实例分离叔丁醇-乙醇-水三元共沸物,设计了常规三塔萃取精馏(CTCED)及节能型多侧线塔萃取精馏(EDCMR)分离流程。通过稳态优化对2种流程进行对比,基于以年度总费用(TAC)最低为目标的稳态优化后可以得出,多侧线塔萃取精馏流程的TAC比常规三塔萃取精馏流程降低了16.16%。在此基础上,对于多侧线塔萃取精馏流程,提出了双温度控制结构(CS1)和带有热负荷/进料流量前馈控制的组成-回流比控制结构(CS2)。在经±10%进料流量和进料组分扰动后,CS1的产物纯度可以在10 h内稳定,但无法恢复到扰动前水平;CS2的产物纯度可以在10 h内恢复到扰动前水平。  相似文献   

5.
石油储量的不断减少与可替代燃料需求的日益增长促进了生物柴油生产的研究。本文对两种生物柴油生产热耦反应精馏构型进行研究,通过灵敏度分析得到初步设计结果;采用热力学分析与经济评估对两种热耦结构与传统结构进行比较,证明了热耦构型的优越性;利用Aspen Plus软件模拟了生物柴油生产过程,计算表明热耦结构的有效能损失与投资费用均显著降低,并且侧提馏式热耦反应精馏构型比侧蒸馏式构型的经济效益更好。对侧提馏式热耦反应精馏构型进行动态研究,结果表明提出的控制结构能够有效地抵抗进料扰动。  相似文献   

6.
《石油化工》2015,44(6):663
采用Aspen软件及修正的Wilson模型模拟了压力对乙酸异丙酯-异丙醇物系共沸组成的影响,提出该物系基于热集成的变压精馏工艺。在此基础上,研究了系统能耗随变压精馏工艺两塔压力组合的变化趋势,优化了理论塔板数、进料位置、回流比等操作参数。模拟结果表明,高压塔操作压力为0.60 MPa、减压塔操作压力为0.02 MPa时,热集成系统能耗利用最合理。该压力条件下变压精馏工艺的最优理论塔板数为高压塔26块、减压塔38块;最优进料位置为高压塔第15块理论塔板、减压塔第10块理论塔板;基于热集成工艺的最优回流比为高压塔1.0,减压塔2.0。热集成变压精馏工艺可节能28.5%。  相似文献   

7.
基于丙酮-甲醇共沸物对压力变化敏感的特点,采用完全热集成变压精馏工艺分离该共沸物。基于相图分析,确定了精馏序列。以全流程的年度总费用TAC最小为目标,对两塔的塔板数、进料位置和回流比进行了优化设计。确定了丙酮-甲醇混合物(m丙酮:m甲醇=40:60)进料流率为3000kg/h的最佳工艺参数:低压塔操作压力为101.325kPa,塔板数为52块,丙酮-甲醇混合物和循环物流分别在第37块和22块位置进料,回流比为1.8;高压塔操作压力为506.625kPa,塔板数为33块,进料位置为第16块,回流比为4.3。高压塔塔顶物流和低压塔塔釜物流有43℃温差,满足完全热集成的条件,热集成负荷为1234.51kW。甲醇和丙酮纯度达到了99.9%,满足分离要求。结果表明完全热集成变压精馏工艺可以有效分离丙酮-甲醇共沸物。  相似文献   

8.
《石油化工》2019,48(11):1121
以萃取精馏法分离乙酸乙酯(EA)和乙醇共沸物系,通过汽液平衡和剩余曲线分析以及实验验证,选取了二甲基亚砜(DMSO)为萃取剂;采用Aspen Plus软件分别对间歇精馏过程和连续精馏过程进行流程模拟,针对连续精馏过程,分析萃取剂进料量、塔板数、回流比、进料位置等参数对产品纯度及再沸器热负荷的影响。实验结果表明,通过对连续精馏过程的模拟找到最佳的操作条件为:原料组成为30%(w)乙醇、70%(w)EA,进料量为1 000 kg/h,DMSO进料量为1 600 kg/h,萃取精馏塔塔板数为30,质量回流比为0.9,原料进料位置为第21块板,萃取剂进料位置为第5块板,溶剂回收塔塔板数为10,质量回流比为0.6,进料位置为第5块板。在该条件下,产品中EA含量为99.93%(w)、乙醇含量为99.82%(w),且萃取剂DMSO可循环使用。  相似文献   

9.
对甲基丙烯酸甲酯/甲醇/水三元共沸混合物分离进行了常规变压精馏和双效热集成变压精馏模拟。以年总费用(TAC)为目标函数,对进料板位置、回流比、塔板数等参数进行了优化。在常规变压精馏工艺中,高压塔进料板位置最佳为第10块板、回流比为0.4、塔板数为23块,低压塔最佳进料板位置为第15块板、回流比为1.0、塔板数为60块,高压塔与低压塔的操作压力分别为300 kPa和10 kPa。在优化后的常规变压精馏基础上,提出了双效热集成变压精馏工艺,与常规变压精馏工艺相比,双效热集成变压精馏工艺的再沸器与冷凝器负荷分别下降34.81%和34.92%,TAC下降31.40%。  相似文献   

10.
利用ASPEN PLUS化工模拟软件,选择NRTL物性分析方法,以N,N-二甲基甲酰胺(DMF)为萃取剂,采用萃取精馏与减压精馏相结合的方法,对水-乙醇-环己醇三元体系的分离过程进行了模拟与优化.考察了塔板数、回流比、原料进料位置及萃取剂进料位置和用量对精馏分离过程的影响,对萃取剂与水分离塔的操作压力进行了比较与分析.结果表明:当原料处理量为10 t/h,醪液中w(水)=85%,w(乙醇)=10%,w(环己醇)=5%时,采用萃取精馏和减压精馏可以使处理后的水中乙醇质量分数小于10×10-6,环己醇质量分数小于30×10-6;回收的w(乙醇)≥99.6%,w(环己醇)≥95%.  相似文献   

11.
为了解决传统反应精馏难以得到高纯度乙酸异丙酯的难题,将反应精馏与萃取精馏工艺耦合在一个塔中,打破产物间的共沸,得到高纯度的乙酸异丙酯。同时采用萃取剂循环物流对异丙醇进行预热,以降低反应萃取精馏塔的再沸器热负荷。利用Aspen Plus模拟软件对该流程模拟,得到乙酸异丙酯的摩尔分数可达99.5%,在此基础上以年度总费用(TAC)最小为优化目标,得到最优的操作参数。基于经济最优流程,对反应萃取精馏合成乙酸异丙酯流程进行控制结构的设计,采用相对增益矩阵(RGA)判据获得不同的操纵变量与控制变量匹配关系,提出了3种动态控制结构并对其动态特性进行了分析。结果表明,Q/F温度串级控制结构可有效抵抗扰动,稳定后产品纯度偏差较小,且回稳时间相比温差控制更短,可以保证生产的平稳运行。  相似文献   

12.
基于遗传算法思想提出了一种有效的分子设计方法,针对丁醇-醋酸丁酯共沸物系的萃取精馏萃取剂选择问题进行了分子设计,经比较筛选出塔顶产物分别是醋酸丁酯和丁醇时的较佳萃取剂为1,3-丙二醇和硝基丁烷。分别以1,3-丙二醇和硝基丁烷为萃取剂,应用精馏过程模拟软件ProⅡ确定了萃取精馏流程及相应的工艺操作条件;通过对比两种流程的塔设备、能耗、操作条件、产品等方面,认为1,3-丙二醇是分离丁醇-醋酸丁酯共沸物系的较适宜萃取剂。模拟计算结果表明,该分子设计方法是有效的,能为工业生产提供理论基础。  相似文献   

13.
提出了一种新的单塔萃取精馏精制芳烃和非芳烃的新工艺,新工艺采用分隔壁萃取精馏塔替代常规萃取精馏流程的萃取精馏塔及溶剂回收塔,不仅节省了设备投资,而且降低了总能耗。利用ASPENPLUS模拟软件,对分隔壁萃取精馏塔及常规萃取流程进行了模拟,考察了溶剂比、回流比及分配比对分隔壁萃取精馏塔的影响,并对两种流程进行了比较,结果表明,分隔壁萃取精馏塔的最佳操作条件为:塔板数为41块,侧线精馏段的板数为10块,回流比为1,溶剂比为3.5,分配比为1.25。在此条件下,分隔壁萃取精馏塔比常规的两塔萃取精馏流程节能25.2%。  相似文献   

14.
In this work, the process simulation of pressure-swing distillation(PSD) and extractive distillation(ED) using ionic liquid(IL) 1-butyl-3-methylimidazolium acetate([bmim][OAc]) as the entrainer for separation of ethyl acetateethanol-water mixture is performed. The design parameters of the two distillation processes are optimized with the minimum total annual cost(TAC) serving as the objective function. The results show that the TAC saving of ED process is 35.27% in comparison with that of PSD process in the case of achieving the same purity and yield of ethyl acetate.In addition, the dynamic controllability of ED process is further studied. The traditional two-point temperature control structure is proposed for the ED process, and it works pretty well while taking into account the disturbances in both feed rate and feed composition.  相似文献   

15.
通过三元相图分析乙腈-水-乙二醇萃取精馏体系热力学性质,利用灵敏度分析确定工艺决策变量优化范围。针对总费用的设备费用、操作费用2个冲突目标,以产品和溶剂纯度为约束条件,建立常规和热集成萃取精馏工艺多目标优化模型,利用Actxserver接口建立Matlab和Aspen Plus联合模拟优化平台,通过调用NSGA-Ⅱ算法求解多目标优化问题。结果表明:对于常规萃取精馏优化过程,种群数为30,初始解经过300代演化,已经达到最优Pareto前沿解,其设备费用受萃取精馏塔塔板数显著影响,操作费用与萃取剂循环量、萃取精馏塔塔回流比相关。采用相同算法参数的热集成工艺优化显示:增设预热器(HX)和控制冷凝器出口温度,改变了原料和萃取剂进料热状态,减少了进料板位置有效能损失,用较少萃取精馏塔塔板数和再沸器负荷即可满足生产要求,3组代表性优化方案的设备费用、操作费用平均降幅分别达到4.15%和7.91%。  相似文献   

16.
In the present work, a comparative study of the extractive distillation and pressure swing distillation for methanol-acetonitrile azeotropic separation is performed for the first time. Different separation alternatives, including the conventional extractive distillation, the extractive distillation with vapor or liquid side-stream, the pressure-swing distillation with or without full heat integration, and the heat-pump assisted pressure-swing distillation are rigorously simulated and optimized based on the minimum total annual cost (TAC) via the sequential iterative strategy. The results show that TAC and CO2 emission of the new extractive distillation with vapor side-stream (Vapor-SED) are similar to that of the extractive distillation with liquid side-stream (Liquid-SED). Furthermore, the Vapor-SED and Liquid-SED gives 30.01% and 30.56% reduction in TAC and 23.32% and 23.49% reduction in CO2 emission, respectively, over the most competitive fully heat-integrated PSD configuration. Hence, extractive distillation with vapor or liquid side-stream appears to be better option economically and environmentally for separation of methanol and acetonitrile.  相似文献   

17.
基于丙酸甲酯-甲醇二元体系的压力敏感特性,以最小年总费用(TAC)作为经济评价指标,对变压精馏分离工艺进行了模拟与优化,并在常规工艺基础上进行了改造,以实现节能的目的。结果表明:常规分离工艺高压进料时,高压塔塔板数为41、回流比为1.5和进料位置为第33块板以及低压塔塔板数为39、回流比为2.0和进料位置为第17块板时TAC最低,为593.00万元/年。将热集成技术应用于常规工艺中,优化后的分离工艺均能实现物系的高效分离。相比于常规变压精馏,部分热集成变压精馏与全热集成变压精馏分别可以节约44.57%与41.94%的能耗,同时可以节约23.84%与32.59%的TAC,主要原因是热量集成使得蒸汽费用与换热器费用降低。优化后的两种工艺分离效果显著,且能耗与TAC均较低,可为工业设计提供理论参考。  相似文献   

18.
以甘油与乙二醇的混合溶剂(摩尔比为6∶1)为萃取剂,分别采用常规萃取精馏(CED)、减压萃取精馏(LPED)、隔壁塔萃取精馏(EDWC)和结合预浓缩段和溶剂回收段的萃取精馏(CPRED)等方法对乙腈 水体系进行精馏分离;并利用Aspen Plus软件对4种工艺流程进行稳态模拟,以年总费用(TAC)最小为目标,采用序贯模块法对各流程的工艺参数进行优化以获得最优结构参数。结果表明:与常规萃取精馏流程的TAC相比,减压萃取精馏的TAC下降了392%,结合预浓缩段和溶剂回收段的萃取精馏的TAC下降了10.57%,而隔壁塔萃取精馏的TAC增加了1003%;从环保角度分析,结合预浓缩段和溶剂回收段合成的萃取精馏流程CO2排放量最少,而隔壁塔萃取精馏流程CO2排放量最多。  相似文献   

19.
胡松  杨卫胜 《石油化工》2013,42(7):775-779
采用化工流程模拟软件Aspen Plus,以NRTL模型计算气液平衡,对萃取精馏分离环氧丙烷-水-甲醇混合物的过程进行模拟。选择1,2-丙二醇为萃取剂,考察了萃取剂与原料的质量比(溶剂比)、萃取精馏塔理论塔板数、粗环氧丙烷进料位置、萃取剂进料位置、萃取剂进料温度和回流比对分离效果的影响。模拟结果表明,在满足环氧丙烷产品纯度为99.99%(w)的条件下,优化的工艺条件为:溶剂比0.45,萃取精馏塔理论塔板数30块,粗环氧丙烷进料位置第20块塔板,萃取剂进料位置第5块塔板,萃取剂进料温度45℃,回流比0.14。在此工艺条件下,环氧丙烷回收率为99.99%,单位产品热负荷为0.936 GJ/t。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号