首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ozone (O3) was employed as an oxygen source for the atomic layer deposition (ALD) of titanium dioxide (TiO2) based on tetrakis-dimethyl-amido titanium (TDMAT). The effects of deposition temperature and O3 feeding time on the film growth kinetics and physical/chemical properties of the TiO2 films were investigated. Film growth was possible at as low as 75 °C, and the growth rate (thickness/cycles) of TiO2 was minimally affected by varying the temperatures at 150–225 °C. Moreover, saturated growth behavior on the O3 feeding time was observed at longer than 0.5 s. Higher temperatures tend to provide films with lower levels of carbon impurities. The film thickness increased linearly as the number of cycles increased. With thicker films and at higher deposition temperatures, surface roughening tended to increase. The as-deposited films were amorphous regardless of the substrate temperatures and there was no change of crystal phase even after annealing at temperatures of 400–600 °C. The films deposited in 0.5 mm holes with an aspect ratio of 3: 1 showed an excellent conformality.  相似文献   

2.
The hydrophilic TiO2 films were successfully deposited on slide glass substrates using titanium tetraisopropoxide as a single precursor without carriers or bubbling gases by a metal-organic chemical vapor deposition method. The TiO2 films were employed by scanning electron microscopy, Fourier transform infrared spectrometry, UV-Visible [UV-Vis] spectroscopy, X-ray diffraction, contact angle measurement, and atomic force microscopy. The temperature of the substrate was 500°C, and the temperatures of the precursor were kept at 75°C (sample A) and 60°C (sample B) during the TiO2 film growth. The TiO2 films were characterized by contact angle measurement and UV-Vis spectroscopy. Sample B has a very low contact angle of almost zero due to a superhydrophilic TiO2 surface, and transmittance is 76.85% at the range of 400 to 700 nm, so this condition is very optimal for hydrophilic TiO2 film deposition. However, when the temperature of the precursor is lower than 50°C or higher than 75°C, TiO2 could not be deposited on the substrate and a cloudy TiO2 film was formed due to the increase of surface roughness, respectively.  相似文献   

3.
The effects of deposition temperature on orientation, surface morphology and dielectric properties of the thin films for Ba0.6Sr0.4TiO3 thin films deposited on Pt/Ti/SiO2/Si substrates by pulsed laser deposition were investigated. X-ray diffraction patterns revealed a (2 1 0) preferred orientation for all the films. With rising substrate temperature from 650 °C to 700 °C, the crystallinity and crystal grain size of the films increase, the relative dielectric constant increases, but the dielectric losses have not obvious difference. The film deposited at 350 °C and annealed at 700 °C has strongly improved roughness and dielectric permittivity compared with the film only deposited directly at 700 °C. Three distinct relaxation processes within tan(δ) were found for the BaxSr1?xTiO3 film: a broadened process of the film relaxation, an intermediate peak which originates from Maxwell–Wagner–Sillars polarization, and an extremely slow process ascribed to leak current. The complex dielectric permittivity and loss can be fitted by an improved Cole–Cole model corresponding to a stretched relaxation function.  相似文献   

4.
《Ceramics International》2023,49(6):9069-9089
The process conditions for selectively forming crystal polymorphs in Er3+-doped Bi2O3 films deposited on Si, SiO2, and C-plane sapphire substrates were systematically investigated. Bi2O3:Er films were deposited at either room temperature or 300 °C and subsequently post annealed to promote crystallization. The critical factor controlling the crystal polymorphs was Er content. When the Er content was less than 1.5 at.%, only α-Bi2O3 phase nucleated upon post annealing. Deposition at 300 °C somewhat lowered the oxidization state, under which β-Bi2O3 structure appeared at lower temperatures and α-Bi2O3 structure appeared at higher temperatures. When the films were doped with over 2 at.% Er3+ ions, the excess Er2O3 stabilized the δ-Bi2O3 structure as the lowest temperature phase. The universal phase transition scheme with increasing annealing temperature was δ-Bi2O3 → β-Bi2O3 → α-Bi2O3. The δ → β transition proceeded through splitting each diffraction peak of δ-Bi2O3 into two components of β-Bi2O3, indicating a correlation between the structures of β-Bi2O3 and δ-Bi2O3. The γ-Bi2O3 phase appeared only in films on Si(100) substrates and after vacuum annealing, suggesting the formation of sillenite (Bi12SiO20). Deposition on C-plane sapphire by using H2O as the oxygen source gas produced a highly (111)-oriented δ-Bi2O3 structure, whereas deposition with O2 yielded a randomly oriented δ-Bi2O3 structure. At Er content exceeding 4 at.%, δ-Bi2O3 was the primary phase in the films on SiO2. The photoluminescence (PL) activity of dopant Er3+ under excitation at a wavelength of 532 nm strongly depended on the crystal polymorphs. α-Bi2O3:Er exhibited intense and stable PL spectra consisting of eight Stark splitting lines. PL from γ-Bi2O3:Er exhibited much weaker two emission lines. δ-Bi2O3:Er and β-Bi2O3:Er films were not emission-active at all. However, δ-Bi2O3:Er film on SiO2 with an Er content of 4 at.% exhibited an intense and broad emission at 1530 and 1560 nm.  相似文献   

5.
Atomic layer deposition (ALD) of controlled-thickness TiO2 films was carried out on particle substrates in a fluidized bed reactor for the first time. Films were deposited on 550 nm SiO2 spheres and 65 nm ZnO nanoparticles for enhanced optical properties. Nanoparticles were fluidized with the assistance of a magnetically-coupled stirring unit. The metalorganic precursor titanium tetraisopropoxide was used here followed by either H2O or H2O2 to deposit TiO2 at various substrate temperatures. Growth rates of 0.01 nm/cycle and 0.04 nm/cycle were achieved when using H2O and H2O2 as the oxidizer, respectively. These conformal TiO2 films were verified using HRTEM, ICP-AES, XPS and UV absorbance measurements. The specific surface area changed appropriately after the particle size increased by the deposition of films with a given density, which showed that primary particles were not agglomerated together due to the coating process. In situ mass spectrometry was used to monitor reaction progress throughout each ALD reaction cycle. Bulk quantities of powder were successfully functionalized by TiO2 nanofilms without wasting excess precursor.  相似文献   

6.
Aluminum films were prepared on H2-plasma pretreated TiN substrates at deposition temperatures of 60-250 °C by metallorganic chemical vapor deposition using dimethylethylamine alane as a precursor. The films were highly pure and the growth rates were 3-50 nm/min, where the lowest deposition temperature was 60 °C. The resistivity was as low as 2.8 μΩcm. High substrate temperatures tended to favor a low resistivity and smooth surface morphology of the films, compared to films with a low temperature at a given thickness. Numerous empty pores appeared in the Al films deposited at a temperature below 150 °C when the film thickness exceeded 200 nm. The number of these pores tended to increase with decrease in temperature. However, in films deposited at temperatures above 200 °C, there were no pores and the large grains were interconnected to a high degree. Higher deposition temperatures yielded a greater preference of the (111) orientation of Al films.  相似文献   

7.
《Ceramics International》2023,49(2):2366-2372
Structure of epitaxial LaMnO3 thin films grown on different single crystal substrates by unconventional polymer assisted deposition (PAD) method was investigated. Epitaxial films were prepared from lanthanum manganite water based solutions deposited by spin coating on single crystal MgO (001), SrTiO3 (001) and SrTiO3 (110) substrates, and the influence of substrate type on the film structure was analysed. Better uniformity of the epitaxial LaMnO3 films on SrTiO3 substrates was obtained, but a non-stoichiometric La1-xMnO3 phase was formed after the heat treatment at 750 °C. In addition, the prepared thin films were multiple annealed at different temperatures up to 900 °C, in order to investigate importance of post-annealing treatment. Epitaxial nature of the prepared films was preserved after annealing at up to 900 °C and the structure rearrangement through formation of cell closer to bulk stochiometric LaMnO3 phase was observed.  相似文献   

8.
Lead-free Bi0.5(Na0.8K0.2)0.5TiO3 (abbreviated as BNKT) thin films were grown on Pt(111)/Ti/SiO2/Si substrates using a sol-gel/spin coating technique and were then annealed at different temperatures (350 °C, 550 °C, 750 °C and 850 °C). Analysis of the XRD patterns and FT-IR spectra were used to determine the main reactions and the phase formation process of BNKT thin films during the sol-gel process. The results show that the dielectric constant of the thin films attains a maximum at a set temperature and then decreases at higher annealing temperatures, which can be attributed to phase formation and transformation. Moreover, the morphologies of the BNKT thin films improve with the increase in grain size and the formation of distinct grain boundaries. Furthermore, through increasing the pH of the precursor solutions, the size of the sol-gel colloidal particles increases slightly and the grains formed from the corresponding solutions tend to be small and uniform.  相似文献   

9.
Praseodymium doped Bi4Ti3O12 (BTO) thin films with composition Bi3.63Pr0.3Ti3O12 (BPT) were successfully prepared on Pt/Ti/SiO2/Si substrates by RF-magnetron sputtering method at substrate temperatures ranging between 500° and 750°C. The structural phase and orientation of the deposited films were investigated in order to understand the effect of the deposition temperature on the properties of the BPT films. As the substrate temperature was increased to 700°C, the films started showing a tendency of assuming a c -axis preferred orientation. At lower temperatures, however, polycrystalline films were formed. The Pt/BPT/Pt capacitor showed an interesting dependence of the remnant polarization (2 P r) as well as dc leakage current values on the growth temperature. The film deposited at 650°C showed the largest 2 P r of 29.6 μC/cm2. With the increase of deposited temperature, the leakage current densities of films decreased at the same applied field and the film deposited at 750°C exhibited the best leakage current characteristics. In addition, the ferroelectric fatigue and Raman measurements were carried out on the as-prepared, postannealed in air and postannealed in oxygen BPT films. It was revealed that the BPT film postannealed in air exhibited the weakest fatigue-resistance characteristics and highest frequency shifted Raman vibration modes, indicating the highest oxygen vacancy concentration in this film.  相似文献   

10.
《Ceramics International》2021,47(18):25826-25831
In this study, we demonstrated the seed layer mediated growth of high-quality BaTiO3 (BTO) thin films using a two-step radio frequency (RF) magnetron sputtering process. Since the as-grown BTO thin films obtained by RF magnetron sputtering at the deposition temperatures of 300–500 °C were amorphous with a low dielectric constant of 20, it is necessary to develop a fabrication process for obtaining crystalline high-k BTO thin films without sacrificing other film properties such as morphology and leakage current. First, it was revealed that ex-situ post-deposition annealing (PDA) at high temperatures in the 700–800 °C range led to the crystallization of BTO films and a high dielectric constant of 121. However, the film morphology deteriorated significantly during PDA, and consequently, a high leakage current was observed due to the rough and discontinuous surface containing voids and micro-cracks. To achieve an excellent leakage current characteristic as well as a high dielectric constant for a crystalline BTO thin film, in-situ crystallization was carried out through local epitaxial growth using a crystalline seed layer. The crystalline BTO seed layer was formed by annealing a 5-nm-thick amorphous BTO film at 700 °C on which the in-situ crystallized BTO main layer was deposited at 500 °C. The in-situ crystallization method resulted in a smooth and uniform surface and a high dielectric constant of 113. In addition, the in-situ crystallized BTO film exhibited a low leakage current density of 10−6 A/cm2 (at 0.8 V) displaying an improvement by a factor of 103 compared to the ex-situ crystallized BTO film.  相似文献   

11.
Abstract

Anatase TiO2 films were deposited on unheated Ce-doped soda–lime–silicate glass substrates by a spray technique from an anatase sol made in the laboratory. In order to investigate the micromechanical properties of TiO2 films, the deposited films were heated treated at: 350, 500 and 550°C, each for 1 h. X-ray diffraction spectra revealed a crystalline structure with an anatase phase and the average diameter of the grains increased from 21.4 to 31.2 nm as the temperature in the heat treatment rose from 20 to 550°C. The films as-deposited and heat-treated at 350°C were found to be smooth and relatively dense. Cracks appeared in TiO2 films when the heating temperature increased to 550°C. The results of nano-indentation test showed that when the heating temperature rose to 500°C, the TiO2 films were found to have nano-hardness and elastic modulus values of 1.1 and 30.8 GPa, respectively. These were the highest values recorded in this work. When the temperature reached 550°C, the nano-hardness and elastic modulus decreased due to the presence of cracks in the films.  相似文献   

12.
Anatase TiO2 nanorod films have been prepared on ITO coated glass substrates at room temperature by dc reactive magnetron sputtering technique. The nanorods are highly ordered and are perpendicular to the substrate. XRD measurements show that the anatase nanorods have a preferred orientation along the [110] direction. The prepared nanorods were annealed at different temperatures (200?C500 °C) in air for 1 h. The dye-sensitized solar cells (DSSC) have been made using the as-deposited and annealed TiO2 nanorods as working electrodes. It has been found that annealing improves the efficiency of the DSSC. An optimum conversion efficiency of 2.13%, at 100 mW/cm2 light intensity has been achieved with TiO2 nanorods annealed at 300 °C.  相似文献   

13.
We studied supercritical carbon dioxide fluid deposition of titanium oxide (TiO2) in trench features on Si substrates using a flow-type deposition apparatus from titanium diisopropoxide bis(dipivaloylmethanate), aiming at fabricating conformal films at a relatively low temperature. We investigated the deposition rate and step coverage under a fluid temperature from 40 to 60 °C, a pressure from 8.0 to 10.0 MPa, and a substrate temperature from 80 to 120 °C. They were dependent on the fluid density, indicating that the solubility difference between the bulk fluid and the neighborhood of the substrate surface plays a decisive role for the deposition. An excellent conformal filling of the trench features was achieved from the fluid of 60 °C under 8 MPa on the substrate kept at 80–100 °C. The XPS spectra of the deposited film suggested partial formation of TiO2, and the XRD spectra showed the existence of some crystalline TiO2 (anatase).  相似文献   

14.
In the work reported here, NiCo2O4 films were grown epitaxially on LaAlO3 (111) substrates at temperatures between room temperature and 700?°C. The effects of the substrate temperature (Tsub) on the structural, electrical and magnetic properties and on the Hall effect of the film were investigated. Tsub has a great influence on the cation disorder. High Tsub makes substitution of Ni (Oh) for Co (Td) easier, and changes the relative Ni3+/Co3+ concentration. The film grown at 400?°C had a relatively larger concentration of Ni3+, which lowers the resistivity and enhances the ferrimagnetism of the NiCo2O4 film. In addition, a sign change in the Hall coefficient from negative to positive was observed with increasing measurement temperature for each of the samples grown at different substrate temperatures.  相似文献   

15.
Preparation of γ-Bi12SiO20 from a compacted mixture of α-Bi2O3 and SiO2 powders is described. A very large volume expansion, related to the phase formation, is observed during heat treatment at 600°C. It is shown that the dedensification results from a preferential diffusion of bismuth and oxygen ions towards SiO2, through the layer of γ-Bi12SiO20 which forms around a silica grain. The expansion begins when γ-Bi12SiO20 grains form a continuous skeleton. When bismuth oxide grains are isolated in the skeleton, expansion and reaction rates are proportional. A quantitative model is proposed to describe this situation assuming an isotropic matter transfer and no coalescence between the γ-Bi12SiO20 grains.  相似文献   

16.
The demand for high performance microwave devices is increasingly promoting the development of miniaturization, integration and multifunctionalization. Here, a uniform and dense NiCuZn ferrite ceramic with high saturation magnetization and low ferromagnetic resonance linewidth was obtained at 950?°C by adjusting the MnO2-Bi2O3 composite additives. The MnO2-Bi2O3 composite additives were composed of 0.5?wt% MnO2 and x wt% Bi2O3 (x?=?0.0, 0.5, 1.0, 1.5, 2.0, and 3.0). The phase structure, microstructures and magnetic properties were systematically studied by means of modern measurement techniques. SEM images reveal that appropriate MnO2-Bi2O3 additions can promote grain growth and reduce sintering temperatures, which is very advantageous for LTCC technology. In addition, the content of MnO2-Bi2O3 additives can significantly reduce ferromagnetic resonance linewidth (FMR) by promoting grain growth and densification at low temperatures. Finally, a uniform and compact NiCuZn ferrite ceramic with an improved 4πMs (~?3812.5 Gauss), a narrow ΔH (~?144.6?Oe), and a reduced Hc (~?85.2?A/m) were obtained (at 950?°C) by adding the optimal volume of Bi2O3 additive. It is expected that the improved gyromagnetic performances will allow the NiCuZn ferrite ceramics to be promising candidates for X-band microwave devices.  相似文献   

17.
The article reports on low-temperature high-rate sputtering of hydrophilic transparent TiO2 thin films using dc dual magnetron (DM) sputtering in Ar + O2 mixture on unheated glass substrates. The DM was operated in a bipolar asymmetric mode and was equipped with Ti(99.5) targets of 50 mm in diameter. The substrate surface temperature Tsurf measured by a thermostrip was less than 180 °C for all experiments. The effect of the repetition frequency fr was investigated in detail. It was found that the increase of fr from 100 to 350 kHz leads to (a) an improvement of the efficiency of the deposition process that results in a significant increase of the deposition rate aD of sputtered TiO2 films and (b) a decrease of peak pulse voltage and sustaining of the magnetron discharge at higher target power densities. It was demonstrated that several hundreds nm thick hydrophilic TiO2 films can be sputtered on unheated glass substrates at aD = 80 nm/min, Tsurf < 180 °C when high value of fr = 350 kHz was used. Properties of a thin hydrophilic TiO2 film deposited on a polycarbonate substrate are given.  相似文献   

18.
The aim of this study was to obtain photocatalytic coatings, capable to decompose organic pollutants, through Electrophoretic Deposition (EPD) of enamels containing respectively 0%, 5%, 10%, 15% (in wt%) of TiO2 onto carbon steel substrates. High quality and homogeneous coatings were obtained by applying 12.5?V during 10?s, as the best EPD conditions. The layers were subsequently heat treated at 740?°C for 10?min, in order to obtain dense glazes.Rietveld refinement of XRD patterns and Raman results show that, after the heat treatment at 740?°C, TiO2 mostly exists as anatase, responsible of the photocatalytic effect. Semi-quantitative chemical analysis indicate segregation of TiO2 on the coatings surface, reaching saturation in the sample with 10?wt% TiO2. FEG-SEM observations reveal rod-like and spherical Ti-rich phases along the cross section of the coatings; some Ti was also dissolved into the enamel. 3D topographical mapping shows that, by adding TiO2, surface roughness increases significantly.Photocatalytic tests were carried out using a 2?×?10?5 M aqueous solution of Methyl Orange (MO) as an organic pollutant. By comparing the decomposition rate of MO achieved with the pure enamel (0% of TiO2) and with the sample with 10% of TiO2, it was shown that the addition of 10% of TiO2 results in 90% photocatalytic efficiency.Moreover, the permeation of organic compounds and their UV degradation were studied by measuring the water contact angle onto the enamel surface directly after dipping into oleic acid and after various UV irradiation times. The longer the UV irradiation time, the lower the contact angle, down to a minimum of 14.54° after 8?h of UV irradiation. This means, the compound was initially adsorbed on the enamel/TiO2 coating surface (10?wt% TiO2) but was efficiently decomposed upon UV irradiation.  相似文献   

19.
《Ceramics International》2016,42(12):13863-13867
Anatase phase TiO2 (a-TiO2) films have been deposited on MgAl2O4(100) substrates at the substrate temperatures of 500–650 °C by the metal organic chemical vapor deposition (MOCVD) method using tetrakis-dimethylamino titanium (TDMAT) as the organometallic (OM) source. The structural analyses indicated that the TiO2 film prepared at 600 °C had the best single crystalline quality with no twins. The out-of-plane and in-plane epitaxial relationships of the film were a-TiO2(001)||MgAl2O4(100) and TiO2[100]||MgAl2O4[100], respectively. A uniform and compact surface with stoichiometric composition was also obtained for the 600 °C-deposited sample. The average transmittance of all the TiO2 films in the visible range exceeded 91% and the optical band gap of the films varied from 3.31 to 3.41 eV.  相似文献   

20.
Lead-free Bi0.5Na0.5TiO3 (BNT) piezoelectric thin films were deposited on Pt/TiOx/SiO2/Si substrates by Sol-Gel method. A dense and well crystallized thin film with a perovskite phase was obtained by annealing the film at 700 °C in a rapid thermal processing system. The relative dielectric constant and loss tangent at 12 kHz, of BNT thin film with 350 nm thickness, were 425 and 0.07, respectively. Ferroelectric hysteresis measurements indicated a remnant polarization value of 9 μC/cm2 and a coercive field of 90 kV/cm. Piezoelectric measurements at the macroscopic level were also performed: a piezoelectric coefficient (d33effmax) of 47 pm/V at E = 190 kV/cm was obtained. The piezoresponse force microscopy data confirmed that BNT thin films present ferroelectric and piezoelectric behavior at the nanoscale level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号