首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The types of free radicals produced in the water-accessible regions of cellulose I and cellulose II fibers by γ-irradiation in nitrogen atmosphere at room temperature were studied by ESR spectroscopy. The ESR spectra of the irradiated cellulose I and II change by contacting the fibers with water, and after immersion in water the spectral shape depends on the orientation of the fiber axes to the magnetic field. These spectra are probably related to the free radicals generated in the highly ordered regions inaccessible to water in irradiated cellulosic fibers. The ESR spectrum of free radicals generated in decrystallized cellulose after irradiation consists of a singlet and a doublet. When the ESR spectra of free radicals formed in the highly ordered regions of cellulose I and II and the singlet and the doublet are combined in adequate ratio, the constructed spectra are similar to those of the radicals scavenged by water in the irradiated cellulose I and II fibers. From these facts, the spectra due to the free radicals in the water-accessible regions in irradiated cellulose I and II are considered to consist of the singlet and the doublet formed by free radicals in the typical amorphous regions and the spectra of other types of radicals generated in the semicrystalline regions.  相似文献   

2.
Ethyl acrylate was graft-copolymerized from acetone–water systems with γ-irradiated, purified cotton cellulose. The scavenging of the free radicals in the irradiated cellulose by water, acetone, and water–acetone systems was determined by electron spin resonance spectroscopy. The ESR spectra of free radicals, scavenged by water and acetone, were recorded by the use of a time-averaging computer attached to the ESR spectrometer, in which the ESR spectrum of the irradiated cellulose, which had been immersed in water and/or acetone, was electronically subtracted from the ESR spectrum of the irradiated cellulose control. For both water and acetone, the ESR spectra of the scavenged free radicals were singlets. This indicated that free radical sites formed on carbon C1 or C4 on radiation-initiated depolymerization, which would generate singlet ESR spectra, were readily accessible to these solvents. The maximum scavenging of the radicals was observed when irradiated cellulose was immersed in acetone–water solution which had a composition of 25/75 vol-%. The scavenging of the free radicals in irradiated cellulose when immersed in acetone–water solutions was less than when immersed in methanol–water solutions. Also, the extent of graft copolymerization of ethyl acrylate from acetone solutions with irradiated cellulose was less than that of ethyl acrylate from methanol solutions. These differences were probably due to differences in the diffusion rates of acetone and methanol into the cellulosie structure. The Trommsdorff-type effect in the acetone solutions would be less than in the methanol solutions, since acetone is a better solvent for poly(ethyl acrylate) than methanol.  相似文献   

3.
The effects of crystalline modification of cellulose and of water on the ESR spectra generated by the trapped free radicals in gamma-irradiated celluloses were investigated for cotton cellulose I, II, III, and IV, partially decrystallized cotton cellulose, ballmilled cotton cellulose, hydrocelluloses of cellulose III and IV, and ramie. On irradiation of the celluloses, free radicals were formed on the cellulose molecule, probably following dehydrogenation or chain cleavage. The free radicals located within the less ordered or amorphous regions of the cellulose reacted readily with water and were terminated. The radicals located within the more ordered regions of the celluloses could be made accessible to reaction with water by the interaction of the celluloses with solvents which caused dimensional changes in the cellulosic structure. In the highly ordered regions of the celluloses, even after long periods of time in solvents which caused large dimensional changes in the cellulosic structure, the trapped free radicals were not terminated by reaction with solvent or water. The ESR spectra of the irradiated, dried celluloses were determined at ?160°C, the single-line spectra recorded had line widths of about 18-24 gauss. On the absorption of water by the irradiated celluloses, the ESR spectra changed and were dependent on the crystalline structure of the irradiated celluloses. The effects of different arrangements of the irradiated celluloses, as shown by their trapped radical spectra, particularly after interaction with water, were discussed.  相似文献   

4.
Electron spin resonance (ESR) spectra of free-radical intermediates formed during photo-initiated graft polymerization reactions of acrylamide, methacrylamide, and diacetone acrylamide onto purified cotton cellulose were recorded. Purified cellulose was saturated with aqueous solutions of the vinyl monomers (0.5M) and then photolyzed under nitrogen by near-ultraviolet light (3100–4100 Å, peak near 3500 Å) at ?196° and 40°C. Other samples of cellulose were saturated with aqueous solutions of the monomers, dried, and then photolyzed at 40°C. In the absence of cellulose, either poorly resolved or no free-radical spectra were generated on photolysis of the monomers. Photolysis of dried cellulose at 40°C and wet cellulose at ?196°C initiated formation of a cellulosic radical that generated a singlet spectrum. Photolysis of wet cellulose at 40°C generated no ESR detectable radical; however, photolysis of wet cellulose that contained monomer at 40°C generated poorly resolved spectra. The ESR spectra of the propagating copolymer radicals recorded were poly(acrylamide), three lines; poly(methacrylamide), five lines; and poly(diacetone acrylamide), two lines (doublet).  相似文献   

5.
An ESR study of the free-radical mechanisms of the post-irradiation reactions of cotton cellulose with acrylonitrile is reported. The effects of atmosphere, moisture content, and solutions of acrylonitrile on the yield and stability of free-radical sites in irradiated cellulose were determined. On interaction of γ-radiation from a 60Co source with cotton cellulose, long-lived free-radical sites were found within the molecular lattice. Short-lived free-radical sites were apparently also formed on chain cleavage, gave strong singlet spectra, and were readily accessible to interaction with water. Other free-radical sites were formed within regions of the cellulosic fiber which were inaccessible to moisture or aqueous solutions even after contact times as long as three days. It was suggested that long-lived free-radical sites in cellulose I (containing regain moisture) resulted from dehydrogenation at C5, and in cellulose II (containing regain moisture) resulted from dehydrogenation at C5 and dehydrogenation of the OH group or dehydroxylation at C6. When irradiated cellulose was contacted with a solution of acrylonitrile (15%) in 75% aqueous zinc chloride, the initial rate of decrease in spin concentration was higher than the rate of decrease as the time of contact increased. The ESR spectrum of the reacted cellulose, observed at ?100°C., as compared with the spectrum for the irradiated cellulose, had decreased in signal strength with increase in time of contact and changed from a three-line spectrum to an ill-defined spectrum. The free radical being observed was probably due to unreacted sites in the cellulose. The extent of the graft copolymerization reaction was directly related to the initial spin concentration in the irradiated cellulose.  相似文献   

6.
The mechanical degradation of pulp cellulose fiber was studied at ambient temperature and at 77°K. ESR findings reveal that mechanical degradation occurs via free-radical routes. Three types of mechanoradicals contributing singlet, doublet, and triplet ESR signals are identified. The singlet signals are derived from the alkoxy radicals at C4 positions as a consequence of the cleavage of glucosidic bonds, the radical pairs generated at C1 positions contributing the doublet signals. Triplet signals are derived from the C2 and C3 positions due to the cleavage of C2 and C3 bonds. Of these radicals, alkoxy radicals are the most stable at ambient temperature. Carbon radicals are capable of interacting rapidly with oxygen molecules to produce peroxy radical intermediates, where alkoxy radicals are inert toward oxygen molecules. ESR study also reveals that cellulose mechanoradicals are capable of initiating vinyl polymerization. MMA propagating radicals are identified when the monomers are in contact with cellulose mechanoradicals. The ability of mechanoradicals to initiate graft copolymerization from cellulose fiber is discussed.  相似文献   

7.
The effects of oxygen on graft copolymerization of ethyl acrylate from methanol–water systems with γ-irradiated fibrous cotton cellulose were investigated by electron spin resonance spectroscopy and by the formation of cellulose–poly(ethyl acrylate) copolymer. The concentrations of free radicals in cellulose irradiated dry in an atmosphere of nitrogen at 25°C decreased during postirradiation storage in nitrogen or oxygen. The concentration of free radicals in the irradiated cellulose, moisture regain of the irradiated cellulose, and formation of cellulose–poly(ethyl acrylate) copolymer decreased with increase in temperature and time of postirradiation storage and to a greater extent when stored in oxygen rather than in nitrogen. From the decrease in moisture regain of irradiated cellulose during postirradiation storage, it was concluded that increased intermolecular bonding occurred in irradiated cellulose during storage in both nitrogen and oxygen atmospheres. When irradiated celluloses which had been stored in either oxygen or nitrogen were copolymerized with ethyl acrylate at 60°C, less formation of copolymer was observed than when the copolymerization reactions were conducted at 25°C. It was concluded that there was no evidence for the formation or decomposition of cellulose peroxides during these reactions and that formation of graft copolymer depended primarily on the concentration of free radicals in the irradiated cellulose at the time of copolymerization.  相似文献   

8.
The free radicals trapped in oriented nylon 6 filaments after γ-irradiation under vacuum at room temperature were studied by ESR spectroscopy. The ESR spectrum measured after irradiation gradually changed to a broad singlet spectrum with decrease in the intensity. The ESR spectrum consisted of radicals with different orientation effects with respect to the outer magnetic field, and saturation effects in reference to microwave power. The simulation of the ESR spectrum from a Gaussian function gave a better fit to the observed spectrum than the calculation from a Lorentzian function. From the resolution of the spectrum from a Gaussian function, the observed spectrum is generated from three kinds of radicals: The relative radical concentration for the first, second, and third radical is about 75%, 6%, and 19% of the total radical concentration, respectively. With regard to the stability of the radicals, the third radical shows a comparatively long lifetime. The first and second radicals show almost identical lifetime, and their concentrations reduce to about 40% of the initial value during the 2 days at room temperature.  相似文献   

9.
It was demonstrated by ESR spectroscopy that the Fe+2/H2O2 system gave a reactive species which generated an ESR triplet spectrum or sorbitol similar to that generated by hydroxyl radicals from the Ti+3/H3O2 system. An ESR spectrum was obtained for the hydroxyl radicals generated by the latter system. However, the lifetime of hydroxyl radicals, generated by the Fe+2/H2O2 system, was apparently very short, and an ESR spectrum for the hydroxyl radicals, generated by this system, was not observed. The Fe+2/H2O2 system also generated triplet spectra with cotton cellulose I, cotton cellulose II, and microcrystalline cellulose, suggesting that a hydrogen atom had been abstracted from the hydroxyl group on carbon C6, or possibly the hydrogen atom on carbon C5. The ESR spectrum generated on microcrystalline cellulose was less intense than those generated on cellulose I and II. On initiation of graft polymerization of the activated cellulose with acrylonitrile, the triplet spectrum disappeared and was replaced by two strong singlet spectra. One of the singlet spectra was likely generated on carbon C1 or C4 on depolymerization of the cellulose molecule, and the other was probably generated on the end of the growing polyacrylonitrile molecular chain. The absence of a triplet spectrum gave direct evidence for the order in which the acrylonitrile monomer was being grafted onto the cellulose molecule. The mechanisms proposed by Haber and Weiss for the reactions generated in the Fe+2/H2O2 system were generally supported.  相似文献   

10.
The relationship between the activity to initiate graft copolymerization under photo-irradiation and the photo-induced radicals of periodic acid-oxidized cellulose (aldehyde cellulose) was investigated. Aldehyde cellulose proved to have a high activity to initiate graft copolymerization under photo-irradiation, and the effect was profound, especially for hydrophilic vinyl monomers such as acrylic acid and acrylamide. By studying the ESR spectrum of photo-irradiated aldehyde cellulose, the formation of a radical giving a singlet spectrum with linewidth of 14–15 G and a g value of 2.001 was observed. This was assigned to an acyl radical orginating in the aldehyde group of the sample. Employing low molecular weight aldehydes, it was confirmed that an acyl radical formed on aldehyde compounds by photo-irradiation has a function sufficient to initiate the graft copolymerization of vinyl monomers. It was concluded that the high activity needed to induce the graft copolymerization of aldehyde cellulose under photo-irradiation was based on an acyl radical which originated in the aldehyde group of the sample.  相似文献   

11.
The ESR spectra of untreated samples and photosensitized samples of rayon cellulose, amorphous cellulose, and wood cellulose irradiated with ultraviolet light were studied. Generally, several kinds of spectra were established, and ferric ion photosensitizer increased the yield of free radicals in celluloses on irradiation. The observed five-line spectrum was resolved to be a superposition of single-line, two-line, and three-line spectra. The decay of free radicals of celluloses at ambient temperature was also examined for changes of the pattern and the intensities of ESR spectra. Based on the changes of spectra induced by a warm-up process, three kinds of radicals which gave three components of the five-line spectrum were identified. During the warm-up process, phenomena of radical migration and formation of new radicals synchronized with the decay of radicals were recognized on photosensitized samples of rayon cellulose and amorphous cellulose.  相似文献   

12.
The influence of draw ratio on free radical behaviour in melt-spun polyethylene fibres has been examined using ESR spectroscopy. The stability of free radicals produced by γ-irradiation is greatest some where between draw ratio 1 and 10. The general trend of radical stability has been found to correlate with the trend of gel content with draw ratio. The possible link between the extent of crosslinking and the production of stable radicals has been discussed in terms of morphological aspects.  相似文献   

13.
Photo-induced radicals in glucose and cellobiose, the model compounds of cellulose molecule, were studied by ESR spectrometry. Very poor formation of radicals in glucose as compared to those in cellobiose was observed. However, a spectrum showing a singlet line was easily produced by the use of light involving shorter wavelengths. It was estimated to be due to the radical formed at the reducing C1 position of glucose molecule. By paper chromatography, the photo-irradiated cellobiose was confirmed to split into glucose through scission of glucosidic bonds in the molecule. The ESR spectrum of the acid-hydrolyzed cellulose similar to that of the unhydrolyzed sample was a seven-line spectrum, but the relative signal intensity was here markedly low. This phenomenon seems to be caused by the reduction of amorphous portion in the samples due to acid hydrolysis. It was concluded that the glucosidic bonds in cellobiose and cellulose molecules are very active toward light and play an important role in the radical formation in photo-irradiated samples.  相似文献   

14.
The ESR spectra of microcrystalline cellulose and purified cotton cellulose reacted with ceric ammonium nitrate in nitric acid were determined. The effects of the concentration of ceric ion, atmosphere, temperature, and graft copolymerization with acrylonitrile on the rates of formation and decay of radicals in the cellulose molecule were determined under both static and dynamic conditions. Under static conditions, after the desired conditions of reaction, the samples were frozen at –100 or –160°C., and then the concentration of free radicals was determined. Under dynamic conditions ceric ion solution was continuously flowed through the celluloses while these determinations were being made at 25°C. In the presence of oxygen the rate of decay of free radicals was decreased. On initiation of copolymerization reactions with acrylonitrile, there was an increase in radical concentration, then a decrease. Apparently, during graft copolymerization the radical site initially on the cellulose molecule was retained on the end of the growing polymer chain. Then additional ceric ion coordinated with the hydroxyl groups of the cellulose, leading to the formation of additional radical sites. An Arrhenius interpretation of the effect of temperature on the formation of these additional radical sites gave apparent activation energies for radical formation on cotton cellulose as 34 kcal./mole and on microcrystalline cellulose as 29 kcal./mole.  相似文献   

15.
Ultraviolet light induced free radicals in cellulose and cellulose graft copolymers were studied by means of ESR spectroscopy. At least six kinds of free radicals were formed in cellulose when the polymer was irradiated with ultraviolet light. Polystyrene and poly(methyl methacrylate) are more resistant to ultraviolet light than cellulose; however, the cellulose graft copolymers of polystyrene and poly(methyl methacrylate) were degraded by ultraviolet light. ESR studies revealed that photoinduced free radicals in cellulose graft copolymers were formed at the grafting branches of the copolymers rather than the cellulose backbone. The mechanisms of light stabilization and energy transfer reactions of cellulose and cellulose graft copolymers are discussed.  相似文献   

16.
Free radicals generated in stretched and ground poly [p-(2-hydroxyethoxy) benzoic acid] (PEOB) were studied by e.s.r. spectroscopy in an effort to isolate those formed by main chain scission. PEOB fibres stretched at ?86°C in a dry nitrogen atmosphere gave an asymmetric spectrum, which had patterns characteristic of both phenoxy and peroxy radicals in addition to some unknown peaks. The shape of the spectrum changed with increasing temperatures, finally becoming identical to that of phenoxy radicals at room temperature. The phenoxy radical was observed in all PEOB films ground or γ-irradiated in liquid nitrogen. In some cases a small peak of peroxy radical was observed. Theoretical spectra calculated for possible radical species or combinations of them were compared with those observed. No direct evidence was observed of the formation of alkyl type and radicals which were assumed to be formed with phenoxy radicals upon main chain rupture of PEOB. However, the relatively unstable peroxy radical observed in these experiments is thought to arise from them.  相似文献   

17.
The effect of γ-irradiation on the performance of wet cellulose acetate membranes in the dose range of 2.5–10 Mrads was investigated using a 60Co source. Changes in transport properties and inherent viscosity of the membranes suggested continued degradation as a result of irradiation. Solubility and specific gravity changes accompanying irradiation indicated some sort of structural aggregation occuring at higher doses. Consumption of dissolved oxygen during irradiation and the extent of deacetylation of the membrane polymer were determined to study the kinetics of the degradative process. Analysis of the end products of irradiation was attempted by UV spectroscopy. ESR spectra of membrane polymer after irradiation were analyzed to identify the free radicals generated. A tentative mechanism of radiolytic degradation causing the observed performance failure is proposed.  相似文献   

18.
The effect of crystalline modifications on the infrared spectra of γ-irradiated cotton cellulose is presented. The crystalline modifications were brought about by treating cotton material with an aqueous solution of NaOH of various concentrations. The infrared spectra of the irradiated samples indicate an absorption band corresponding to the absorption of C?O groups. It was found that the intensity and frequency of this band depend on the crystalline structure. Thus, it appears at 1735 cm?1 in the spectrum of cellulose I and at 1610 cm?1 in the spectrum of cellulose II.  相似文献   

19.
The annihilation of the radicals in irradiated 2‐hydroxyethyl methacrylate copolymer was analyzed by the use of electron paramagnetic resonance (EPR) spectroscopy. The EPR spectra were deconvoluted into three radicals: a quartet (Ra), a triplet (Rb), and a broad singlet (Rc). Radical Ra was attributed to coupling with a methyl radical and/or a doublet or triplet with about the same hyperfine coupling due to a methylene radical. Radical Rb was due to a methylene radical produced by main‐chain scission. Radical Rc was attributed to various free radicals without coupling to protons. By comparing the EPR spectra of radicals Ra, Rb, and Rc with the spectrum of a 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) standard with a known spin number, we calculated the spin numbers of the radicals, which decreased with time in the temperature range 25–45°C, regardless of the irradiation dose. The annealing of Ra and Rb and the annealing of Rc at longer times followed second‐order kinetics; these were different from the kinetics for the color formation and defect‐controlled hardening of polymers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Poly-(bisphenol A carbonate) (PC) samples were exposed to different doses of γ-rays from a 60Co source (from 0.05 to 0.3 M rad) at room temperature. Conductivity and dielectric constant as well as optical measurements were carried out. It was noticed that almost no work has been reported on the electrical conductivity of polycarbonate at high temperatures. γ-irradiation of polycarbonate is believed to create free radicals which increases the state of disorder and perturb the orientation of dipoles inside the polymer. At about 95°C, the electrical conductivities of irradiated samples were found to increase by nearly one order of magnitude with respect to the unirradiated one. The dielectric constant, ?, of fresh polycarbonate was nearly temperature independent over a range of ~ 70°C, then it increased with temperature, but for γ-irradiated samples (from 0.05 to 0.3 M rad) the dielectric constant increased continuously with temperature and also with respect to the fresh sample what confirms the effect of γ-irradiation in perturbing the orientation of the dipoles in the polymer. It was found that the UV absorption spectrum has a broad band at 0.280 μm and the absorption intensity was strongly dependent on the dose of γ-irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号