首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Amphiphilicity is one of the molecular bases for self‐assembly. By tuning the amphiphilicity of building blocks, controllable self‐assembly can be realized. This article reviews different routes for tuning amphiphilicity and discusses different possibilities for self‐assembly and disassembly in a controlled manner. In general, this includes irreversible and reversible routes. The irreversible routes concern irreversible reactions taking place on the building blocks and changing their molecular amphiphilicity. The building blocks are then able to self‐assemble to form different supramolecular structures, but cannot remain stable upon loss of amphiphilicity. Compared to the irreversible routes, the reversible routes are more attractive due to the good control over the assembly and disassembly of the supramolecular structure formed via tuning of the amphiphilicity. These routes involve reversible chemical reactions and supramolecular approaches, and different external stimuli can be used to trigger reversible changes of amphiphilicity, including light, redox, pH, and enzymes. It is anticipated that this line of research can lead to the fabrication of new functional supramolecular assemblies and materials.  相似文献   

3.
The thin‐film directed self‐assembly of molecular building blocks into oriented nanostructure arrays enables next‐generation lithography at the sub‐5 nm scale. Currently, the fabrication of inorganic arrays from molecular building blocks is restricted by the limited long‐range order and orientation of the materials, as well as suitable methodologies for creating lithographic templates at sub‐5 nm dimensions. In recent years, higher‐order liquid crystals have emerged as functional thin films for organic electronics, nanoporous membranes, and templated synthesis, which provide opportunities for their use as lithographic templates. By choosing examples from these fields, recent progress toward the design of molecular building blocks is highlighted, with an emphasis on liquid crystals, to access sub‐5 nm features, their directed self‐assembly into oriented thin films, and, importantly, the fabrication of inorganic arrays. Finally, future challenges regarding sub‐5 nm patterning with liquid crystals are discussed.  相似文献   

4.
Macroscopic supramolecular assembly (MSA) represents a new advancement in supramolecular chemistry involving building blocks with sizes beyond tens of micrometers associating through noncovalent interactions. MSA is established as a unique method to fabricate supramolecularly assembled materials by shortening the length scale between bulk materials and building blocks. However, improving the precise alignment during assembly to form orderly assembled structures remains a challenge. Although the pretreatment of building blocks can ameliorate order to a certain degree, defects or mismatching still exists, which limits the practical applications of MSA. Therefore, an iterative poststrategy is proposed, where self‐correction based on dynamic assembly/disassembly is applied to achieve precise, massive, and parallel assembly. The self‐correction process consists of two key steps: the identification of poorly ordered structures and the selective correction of these structures. This study develops a diffusion‐kinetics‐dependent disassembly to well identify the poorly aligned structures and correct these structures through iterations of disassembly/reassembly in a programmed fashion. Finally, a massive and parallel assembly of 100 precise dimers over eight iteration cycles is achieved, thus providing a powerful solution to the problem of processing insensitivity to errors in self‐assembly‐related methods.  相似文献   

5.
3D hydrogel microstructures that encapsulate cells have been used in broad applications in microscale tissue engineering, personalized drug screening, and regenerative medicine. Recent technological advances in microstructure assembly, such as bioprinting, magnetic assembly, microfluidics, and acoustics, have enabled the construction of designed 3D tissue structures with spatially organized cells in vitro. However, a bottleneck exists that still hampers the application of microtissue structures, due to a lack of techniques that combined high‐throughput fabrication and flexible assembly. Here, a versatile method for fabricating customized microstructures and reorganizing building blocks composed of functional components into a combined single geometric shape is demonstrated. The arbitrary microstructures are dynamically synthesized in a microfluidic device and then transferred to an optically induced electrokinetics chip for manipulation and assembly. Moreover, building blocks containing different cells can be arranged into a desired geometry with specific shape and size, which can be used for microscale tissue engineering.  相似文献   

6.
Self‐assembled nanomaterials show potential high efficiency as theranostics for high‐performance bioimaging and disease treatment. However, the superstructures of pre‐assembled nanomaterials may change in the complicated physiological conditions, resulting in compromised properties and/or biofunctions. Taking advantage of chemical self‐assembly and biomedicine, a new strategy of “in vivo self‐assembly” is proposed to in situ construct functional nanomaterials in living subjects to explore new biological effects. Herein, recent advances on peptide‐based nanomaterials constructed by the in vivo self‐assembly strategy are summarized. Modular peptide building blocks with various functions, such as targeting, self‐assembly, tailoring, and biofunctional motifs, are employed for the construction of nanomaterials. Then, self‐assembly of these building blocks in living systems to construct various morphologies of nanostructures and corresponding unique biological effects, such as assembly/aggregation‐induced retention (AIR), are introduced, followed by their applications in high‐performance drug delivery and bioimaging. Finally, an outlook and perspective toward future developments of in vivo self‐assembled peptide‐based nanomaterials for translational medicine are concluded.  相似文献   

7.
Cell‐laden hydrogels show great promise for creating engineered tissues. However, a major shortcoming with these systems has been the inability to fabricate structures with controlled micrometer‐scale features on a biologically relevant length scale. In this Full Paper, a rapid method is demonstrated for creating centimeter‐scale, cell‐laden hydrogels through the assembly of shape‐controlled microgels or a liquid–air interface. Cell‐laden microgels of specific shapes are randomly placed on the surface of a high‐density, hydrophobic solution, induced to aggregate and then crosslinked into macroscale tissue‐like structures. The resulting assemblies are cell‐laden hydrogel sheets consisting of tightly packed, ordered microgel units. In addition, a hierarchical approach creates complex multigel building blocks, which are then assembled into tissues with precise spatial control over the cell distribution. The results demonstrate that forces at an air–liquid interface can be used to self‐assemble spatially controllable, cocultured tissue‐like structures.  相似文献   

8.
Self‐assembly is a fundamental concept and a powerful approach in molecular science. However, creating functional materials with the desired properties through self‐assembly remains challenging. In this work, through a combination of experimental and computational approaches, the self‐assembly of small amphiphilic dendrons into nanosized supramolecular dendrimer micelles with a degree of structural definition similar to traditional covalent high‐generation dendrimers is reported. It is demonstrated that, with the optimal balance of hydrophobicity and hydrophilicity, one of the self‐assembled nanomicellar systems, totally devoid of toxic side effects, is able to deliver small interfering RNA and achieve effective gene silencing both in cells – including the highly refractory human hematopoietic CD34+ stem cells – and in vivo, thus paving the way for future biomedical implementation. This work presents a case study of the concept of generating functional supramolecular dendrimers via self‐assembly. The ability of carefully designed and gauged building blocks to assemble into supramolecular structures opens new perspectives on the design of self‐assembling nanosystems for complex and functional applications.  相似文献   

9.
An in situ microfluidic assembly approach is described that can both produce microsized building blocks and assemble them into complex multiparticle configurations in the same microfluidic device. The building blocks are microparticles of the biopolymer chitosan, which is intentionally selected because its chemistry allows for simultaneous intraparticle and interparticle linking. Monodisperse chitosan‐bearing droplets are created by shearing off a chitosan solution at a microfluidic T‐junction with a stream of hexadecane containing a nonionic detergent. These droplets are then interfacially crosslinked into stable microparticles by a downstream flow of glutaraldehyde (GA). The functional properties of these robust microparticles can be easily varied by introducing various payloads, such as magnetic nanoparticles and/or fluorescent dyes, into the chitosan solution. The on‐chip connection of such individual particles into well‐defined microchains is demonstrated using GA again as the chemical “glue” and microchannel confinement as the spatial template. Chain flexibility can be tuned by adjusting the crosslinking conditions: both rigid chains and semiflexible chains are created. Additionally, the arrangement of particles within a chain can also be controlled, for example, to generate chains with alternating fluorescent and nonfluorescent microparticles. Such microassembled chains could find applications as microfluidic mixers, delivery vehicles, microscale sensors, or miniature biomimetic robots.  相似文献   

10.
For the development of applications and novel uses for peptide nanostructures, robust routes for their surface functionalization, that ideally do not interfere with their self‐assembly properties, are required. Many existing methods rely on covalent functionalization, where building blocks are appended with functional groups, either pre‐ or post‐assembly. A facile supramolecular approach is demonstrated for the formation of functionalized nanofibers by combining the advantages of biocatalytic self‐assembly and surfactant/gelator co‐assembly. This is achieved by enzymatically triggered reconfiguration of free flowing micellar aggregates of pre‐gelators and functional surfactants to form nanofibers that incorporate and display the surfactants’ functionality at the surface. Furthermore, by varying enzyme concentration, the gel stiffness and supramolecular organization of building blocks can be varied.  相似文献   

11.
In this Editorial for the Nanowires Special Issue of Advanced Materials , Younan Xia and Peidong Yang welcome you to this survey of the fast‐moving area of nanowire research. Communications and Research News articles covering vapor‐phase, solution‐based, and template‐directed routes to the synthesis of nanowires, self‐assembly with nanowires as the building blocks, and new physics associated with 1D nanostructures can all be found within.  相似文献   

12.
By virtue of their native structures, tubulin dimers are protein building blocks that are naturally preprogrammed to assemble into microtubules (MTs), which are cytoskeletal polymers. Here, polycation‐directed (i.e., electrostatically tunable) assembly of tubulins is demonstrated by conformational changes to the tubulin protofilament in longitudinal and lateral directions, creating tubulin double helices and various tubular architectures. Synchrotron small‐angle X‐ray scattering and transmission electron microscopy reveal a remarkable range of nanoscale assembly structures: single‐ and double‐layered double‐helix tubulin tubules. The phase transitions from MTs to the new assemblies are dependent on the size and concentration of polycations. Two characteristic scales that determine the number of observed phases are the size of polycation compared to the size of tubulin (≈4 nm) and to MT diameter (≈25 nm). This work suggests the feasibility of using polycations that have scissor‐ and glue‐like properties to achieve “programmable breakdown” of protein nanotubes, tearing MTs into double‐stranded tubulins and building up previously undiscovered nanostructures. Importantly, a new role of tubulins is defined as 2D shape‐controllable building blocks for supramolecular architectures. These findings provide insight into the design of protein‐based functional materials, for example, as metallization templates for nanoscale electronic devices, molecular screws, and drug delivery vehicles.  相似文献   

13.
Peptide‐based materials are one of the most important biomaterials, with diverse structures and functionalities. Over the past few decades, a self‐assembly strategy is introduced to construct peptide‐based nanomaterials, which can form well‐controlled superstructures with high stability and multivalent effect. More recently, peptide‐based functional biomaterials are widely utilized in clinical applications. However, there is no comprehensive review article that summarizes this growing area, from fundamental research to clinic translation. In this review, the recent progress of peptide‐based materials, from molecular building block peptides and self‐assembly driving forces, to biomedical and clinical applications is systematically summarized. Ex situ and in situ constructed nanomaterials based on functional peptides are presented. The advantages of intelligent in situ construction of peptide‐based nanomaterials in vivo are emphasized, including construction strategy, nanostructure modulation, and biomedical effects. This review highlights the importance of self‐assembled peptide nanostructures for nanomedicine and can facilitate further knowledge and understanding of these nanosystems toward clinical translation.  相似文献   

14.
In block copolymer (BCP) nanolithography, microphase separated polystyrene‐block‐polydimethylsiloxane (PS‐b‐PDMS) thin films are particularly attractive as they can form small features and the two blocks can be readily differentiated during pattern transfer. However, PS‐b‐PDMS is challenging because the chemical differences in the blocks can result in poor surface‐wetting, poor pattern orientation control and structural instabilities. Usually the interfacial energies at substrate surface are engineered with the use of a hydroxyl‐terminated polydimethylsiloxane (PDMS‐OH) homopolymer brush. Herein, we report a facile, rapid and tuneable molecular functionalization approach using hexamethyldisilazane (HMDS). The work is applied to both planar and topographically patterned substrates and investigation of graphoepitaxial methods for directed self‐assembly and long‐range translational alignment of BCP domains is reported. The hexagonally arranged in‐plane and out‐of‐plane PDMS cylinders structures formed by microphase separation were successfully used as on‐chip etch masks for pattern transfer to the underlying silicon substrate. The molecular approach developed here affords significant advantages when compared to the more usual PDMS‐OH brushes used.  相似文献   

15.
Long‐distance wireless actuation indicates precise remote control over materials, sensors, and devices that are widely utilized in biomedical, defence, disaster relief, deep ocean, and outer space applications to replace human work. Unlike radio frequency (RF) control, which has low tolerance toward electromagnetic interference (EMI), light control represents a promising method to overcome EMI. Nonetheless, long‐distance light‐controlled wireless actuation able to compete with RF control has not been achieved until now due to the lack of highly light‐sensitive actuator designs. Here, it is demonstrate that amyloid‐like protein aggregates can organize photomodule single‐layer reduced graphene oxide (rGO) into a well‐defined multilayer stack to display long‐distance photoactuation. The amyloid‐like proteinaceous component docks the rGO layers together to form a hybrid film, which can reliably adhere onto various material surfaces with robust interfacial adhesion. The sensitive photothermal effect and a fast bending in 1 s to switch a circuit are achieved after forming the film on a plastic substrate and irradiating the bilayer film with a blue laser from 100 m away. A photoactuation distance of 50 km can be further extrapolated based on a commercial high‐power laser. This study reveals the great potential of amyloid‐like aggregates in remote light control of robots and devices.  相似文献   

16.
Peptides that self‐assemble into cross‐β‐sheet amyloid structures constitute promising building blocks to construct highly ordered proteinaceous materials and nanoparticles. Nevertheless, the intrinsic polymorphism of amyloids and the difficulty of controlling self‐assembly currently limit their usage. In this study, the effect of electrostatic interactions on the supramolecular organization of peptide assemblies is investigated to gain insights into the structural basis of the morphological diversities of amyloids. Different charged capping units are introduced at the N‐terminus of a potent β‐sheet‐forming sequence derived from the 20–29 segment of islet amyloid polypeptide, known to self‐assemble into polymorphic fibrils. By tuning the charge and the electrostatic strength, different mesoscopic morphologies are obtained, including nanorods, rope‐like fibrils, and twisted ribbons. Particularly, the addition of positive capping units leads to the formation of uniform rod‐like assemblies, with lengths that can be modulated by the charge number. It is proposed that electrostatic repulsions between N‐terminal positive charges hinder β‐sheet tape twisting, leading to a unique control over the size of these cytocompatible nanorods by protofilament growth frustration. This study reveals the high susceptibility of amyloid formation to subtle chemical modifications and opens to promising strategies to control the final architecture of proteinaceous assemblies from the peptide sequence.  相似文献   

17.
Organic framework polymers have attracted much interest due to the enormous potential design space offered by the atomically precise spatial assembly of organic molecular building blocks. The morphology control of organic frameworks is a complex issue that hinders the development of organic frameworks for practical applications. Biomimetic self‐assembly is a promising approach for designing and fabricating multiple‐functional nanoarchitectures. A bioinspired hollow flower‐like organic framework nanosphere heterostructure comprised of carbon nitride and polydopamine (g‐C3N4@PDA) is successfully synthesized via a mild and green method. This heterostructure can effectively avoid the agglomeration of nanosheets to better access the hollow nanospheres with high open‐up specific surface area. The electron delocalization of g‐C3N4 and PDA under visible light can largely promote photoelectron transfer and enhance the photocatalytic activity of the g‐C3N4@PDA. Furthermore, the g‐C3N4@PDA can effectively enhance the generation of reactive oxygen species under irradiation, which can lead to cell apoptosis and enhance the performance for cancer therapy. Therefore, the as‐prepared g‐C3N4@PDA provides a paradigm of highly efficient photocatalyst that can be used as nanomedicine toward cancer therapy. This study could open up a new avenue for exploiting more other potential hollow nanosphere organic frameworks.  相似文献   

18.
Self‐assembled functional nanoarchitectures are employed as important nanoscale building blocks for advanced materials and smart miniature devices to fulfill the increasing needs of high materials usage efficiency, low energy consumption, and high‐performance devices. One‐dimensional (1D) crystalline nanostructures, especially molecule‐composed crystalline nanostructures, attract significant attention due to their fascinating infusion structure and functionality which enables the easy tailoring of organic molecules with excellent carrier mobility and crystal stability. In this review, we discuss the recent progress of 1D crystalline self‐assembled nanostructures of functional molecules, which include both a small molecule‐derived and a polymer‐based crystalline nanostructure. The basic principles of the molecular structure design and the process engineering of 1D crystalline nanostructures are also discussed. The molecular building blocks, self‐assembly structures, and their applications in optical, electrical, and photoelectrical devices are overviewed and we give a brief outlook on crucial issues that need to be addressed in future research endeavors.  相似文献   

19.
Increasingly intricate in their composition and structural organization, hierarchical multicomponent metamaterials with nonlinear spatially reconfigurable functionalities challenge the intrinsic constraints of natural materials, revealing tremendous potential for the advancement of biochemistry, nanophotonics, and medicine. Recent breakthroughs in high‐resolution nanofabrication utilizing ultranarrow, precisely controlled ion or laser beams have enabled assembly of architectures of unprecedented structural and functional complexity, yet costly, time‐ and energy‐consuming high‐resolution sequential techniques do not operate effectively at industry‐required scale. Inspired by the fictional Baron Munchausen's fruitless attempt to pull himself up, it is demonstrated that metamaterials can undergo intrinsically driven self‐assembly, metaphorically pulling themselves up into existence. These internal drivers hold a key to unlocking the potential of metamaterials and mapping a new direction for the large‐area, cost‐efficient self‐organized fabrication of practical devices. A systematic exploration of these efforts is presently missing, and the driving forces governing the intrinsically driven self‐assembly are yet to be fully understood. Here, recent progress in the self‐organized formation and self‐propelled growth of complex hierarchical multicomponent metamaterials is reviewed, with emphasis on key principles, salient features, and potential limitations of this family of approaches. Special stress is placed on self‐assembly driven by plasma, current in liquid, ultrasonic, and similar highly energetic effects, which enable self‐directed formation of metamaterials with unique properties and structures.  相似文献   

20.
The application of nanoscale electrical and biological devices will benefit from the development of nanomanufacturing technologies that are high‐throughput, low‐cost, and flexible. Utilizing nanomaterials as building blocks and organizing them in a rational way constitutes an attractive approach towards this goal and has been pursued for the past few years. The optical near‐field nanoprocessing of nanoparticles for high‐throughput nanomanufacturing is reported. The method utilizes fluidically assembled microspheres as a near‐field optical confinement structure array for laser‐assisted nanosintering and nanoablation of nanoparticles. By taking advantage of the low processing temperature and reduced thermal diffusion in the nanoparticle film, a minimum feature size down to ≈100 nm is realized. In addition, smaller features (50 nm) are obtained by furnace annealing of laser‐sintered nanodots at 400 °C. The electrical conductivity of sintered nanolines is also studied. Using nanoline electrodes separated by a submicrometer gap, organic field‐effect transistors are subsequently fabricated with oxygen‐stable semiconducting polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号