首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Bi0.5Na0.5TiO3-BaTiO3-Bi0.5K0.5TiO3 (BNT-BT-BKT) lead-free piezoceramics with compositions near the rhombohedral-tetragonal morphotropic phase boundary (MPB) were prepared and investigated. At room temperature, all ceramics show excellent electrical properties. In this study, the best properties were observed in 0.884BNT-0.036BT-0.08BKT, with the remnant polarization, bipolar total strain, unipolar strain, piezoelectric constant, and planar electromechanical coupling factor being 34.4 μC cm−2, 0.25%, 0.15%, 122 pC N−1, and 0.30, respectively. Detailed analysis of the temperature dependence of polarization-electric field (P-E) loops and bipolar/unipolar strain-electric field (S-E) curves of this composition revealed a ferroelectric-antiferroelectric phase transition around 100 °C. Around this temperature, there is a significant shape change in both P-E and S-E curves, accompanied by enhanced strain and decreased polarization; the largest recoverable strain reaches 0.42%. These results can be explained by the formation of antiferroelectric order and the contribution of field-induced antiferroelectric-ferroelectric phase transition to piezoelectric response. Our results indicate that BNT-BT-BKT lead-free piezoceramics can have excellent electrical properties in compositions near the MPB and also reveal some insight into the temperature dependence of the electrical performance with the MPB composition.  相似文献   

2.
采用传统固相反应合成法制备0.95(K0.5Na0.5)NbO3-0.05Li(Nb0.5Sb0.5)O3基无铅压电陶瓷,研究了烧结温度对0.95(K0.5Na0.5)NbO3-0.05Li(Nb0.5Sb0.5)O3陶瓷相结构、显微组织和压电介电性能的影响。结果表明,在960~1060℃的温度区间内,所得到的一系列烧结样品在室温下均为纯的钙钛矿型结构,未观察到第二相出现;随着烧结温度的升高,晶粒的平均尺寸显示出先增大后减小的趋势,在1020℃时晶粒的平均粒径达到最大值3.5μm。电学性能分析表明,烧结温度为1020℃时,该体系陶瓷压电介电性能达到最优值:d33=245pC/N,kp=0.42,tanδ=0.03,ε3T3/ε0=640,Ec=2.1kV/mm,Pr=20μC/cm2。  相似文献   

3.
用传统的固相反应法将LiNbO3(LN)加入(Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3-BaTiO3制得无铅压电陶瓷。研究了该复合体系的压电和铁电性能,着重研究加入LiNbO3对0.852BNT-0.110BKT-0.038BT这一组分的相结构和电性能影响。加LN形成的材料结构分析(XRD)表明,LiNbO3能完全固溶入钙钛矿结构。加入0.05LN导致弥散相变,材料由四方相和菱方相两相共存转变为伪立方相,电滞回线呈现顺电相的特征。加入0.02LN形成的四元系电性能最佳:压电常数d33=245pC/N,机电耦合系数kp=0.20,kt=0.495,室温介电常数εr=1502,剩余极化强度Pr=26μC/cm2。在此基础上,研究了复合LN对去极化温度Td的作用,结果表明,引入LN会降低这一体系的去极化温度。  相似文献   

4.
以0.2 mol/L Ba(OH)2+0.2 mol/L Sr(OH)2溶液为电解液,采用微弧氧化法,在Ti板表面原位生长铁电薄膜,并对薄膜的物相构成、元素分布情况、截面结构及介电性能进行表征。结果表明:该工艺下制备的薄膜主要由四方相Ba0.5Sr0.5TiO3构成,薄膜致密层内,Ba,Sr,Ti和O元素分布都较均匀,但在微弧氧化孔洞附近存在含量波动;该薄膜在1 kHz下的介电常数较优,为411.3。最后对微弧氧化沉积铁电薄膜的成膜过程进行了分析,提出了微弧氧化过程中可能存在的化学反应。  相似文献   

5.
Cemented carbide hard alloys (W0.5Al0.5)C0.5-M (Fe, Co, and Ni) were successfully produced by mechanical alloying and hot-pressing. The density, microhardness and bending strength of the samples were also tested. The relative density of the bulk samples can reach over 98% under the hot-pressing sintering. Comparison of sintering behavior, microstructure and mechanical property of the hard alloys (W0.5Al0.5)C0.5 with different binders (Fe, Co, and Ni) has been made. It found that no η-type phases formed in all the three kinds of hard alloys (W0.5Al0.5)C0.5-Co, (W0.5Al0.5)C0.5-Ni and (W0.5Al0.5)C0.5-Fe during the sintering process. The results also showed that, in (W0.5Al0.5)C0.5-M (Fe, Co, and Ni) hard alloys with constant grain size and binder phase content, the hardness of (W0.5Al0.5)C0.5-Fe is similar to (W0.5Al0.5)C0.5-Co hard alloys and the bending strength of (W0.5Al0.5)C0.5-Ni is a little lower than (W0.5Al0.5)C0.5-Co hard alloys.  相似文献   

6.
Single-crystalline Na0.5Bi0.5TiO3 (NBT) nanowires, with diameters of 100 nm and lengths of about 4 μm, were synthesized by using a simple hydrothermal method. Phase composition, morphology and microstructure of the as-prepared powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). The effects of reaction temperature and reaction time on precipitation of the NBT nanowires were investigated. It was found that reaction time significantly influenced the growth behavior of the powders in the hydrothermal system. Based on the experimental results, the one-dimensional (1D) growth mechanism of the NBT was governed by a dissolution-recrystallization mechanism. NBT ceramics derived from the nanowires showed typical characteristics of relaxor ferroelectrics, with diffuseness exponent γ of as high as 1.73.  相似文献   

7.
Cemented carbides hard alloy (W0.5Al0.5)C0.5-13.3 vol% Ni was successfully prepared by reactive sintering of carbon, nickel powder and W0.5Al0.5 alloy powder. The novel cemented carbide hard alloy has superior mechanical properties. The influence of sintering time and temperature on the microstructure, mechanical properties and density of the specimens are well described. Interestingly, both sintering time and temperature have amazing influence on the mechanical properties, density and microstructure of the specimen. During the reactive sintering process, Ni was the binder phase for sintering (W0.5Al0.5)C0.5-Ni cemented carbide, and it also accelerated the reaction rate of synthesizing (W0.5Al0.5)C0.5. The reactive sintering is a good method for preparing cemented carbide hard alloy (W0.5Al0.5)C0.5-Ni. Another phenomenon is that no WNi/W3Ni3C/NiCx type phases are found in the bulk specimens, although it was prepared by reactive sintering the carbon, nickel powder and W0.5Al0.5 alloy powder directly and the carbon vacancy reach to the astonished 50% value.  相似文献   

8.
We report an orderly study on the structural and dielectric properties of Ni0.5Zn0.5Cr0.5Fe1.5O4 nanoparticles (NPs) synthesized by a polyethylene glycol (PEG)-assisted hydrothermal technique. XRD, FT-IR, FE-SEM and EDX measurements were implemented for the structural, morphological and compositional investigations of the product. Dielectric spectroscopy was used for the dielectric property investigation of the sample. Average particle size of the nanoparticles was estimated using Debye-Scherrer's equation as 34 nm. Electrical properties of the sample have been investigated in the range of 1 Hz to 3 MHz (233-412 K). It is observed that the sample has a giant dielectric constant approaching to 106 within the examined temperature range. It is also determined that the sample exhibits a dispersive phase transition around 305 K at which this giant value of dielectric constant has been obtained. This transition has been characterized by Diffuse Phase Transition. Temperature and frequency dependence of dielectric loss function has been attributed to surface charges for the short-time relaxations and to hopping electrons for the long-time relaxations. At low frequencies, dielectric loss function has been supported by the modified Cole-Cole equation. Frequency and temperature dependent conductivity behavior of the sample has been explained by Overlapping Large Polaron Tunneling model.  相似文献   

9.
The ternary system (1 − x − y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBi0.5Li0.5TiO3 (abbreviated to BNKLT-x/y) was synthesized by conventional oxide-mixed method. The phase structure, microstructure, and dielectric, ferroelectric and piezoelectric properties of the ceramics were investigated. The X-ray diffraction patterns showed that pure perovskite phase with rhombohedral structure can be obtained in all the ceramics. The grain size varied with x and y. The temperature dependence of dielectric constant and dielectric loss revealed there were two phase transitions which were from ferroelectric (tetragonal) to anti-ferroelectric (rhombohedral) and anti-ferroelectric to paraelectric (cubic). Either increasing x or y content can make Tm (the temperature at which dielectric constant r reaches the maximum) increase. With the addition of Bi0.5K0.5TiO3, the remanent polarization Pr increased but the coercive field Ec decreased. With the addition of Bi0.5Li0.5TiO3, Pr increased obviously and Ec increased slightly. Due to the stronger ferroelectricity by modifying Bi0.5K0.5TiO3 and Bi0.5Li0.5TiO3, the piezoelectric properties were enhanced at x = 0.22 and y = 0.10, which were as follows: Pr = 31.92 μC/cm2, Ec = 32.40 kV/cm, r = 1118, tan δ = 0.041, d33 = 203 pC/N and Kp = 0.31. The results show that the BNKLT-x/y ceramics are promising candidates for the lead-free materials.  相似文献   

10.
在广义梯度近似下, 采用基于密度泛函理论框架下的第一性原理和虚拟晶体近似 (VCA) 方法, 计算了Pb0.5Sr0.5TiO3 (PST)电子结构及其属性. 分析了PST固溶体总体能量变化趋势, 确定了A位离子在铁电相的平衡构型. 计算结果表明: 在PST固溶体中, 当Ti原子相对于氧八面体沿[001]方向发生约0.012 nm偏心位移, PST出现能量极小值.O 2p和Ti 3d轨道的强杂化以及部分O---Pb和O---Sr轨道杂化间接增强了TiO6八面体的畸变, 体系总能量降低, 促进了PST铁电畴变的形成.  相似文献   

11.
采用草酸盐共沉淀法合成了层状LixNi0.5Mn0.5O2(x=1.00,1.05,1.10,1.15)正极材料,并研究了配锂量x为1.0,1.05,1.0和1.15时对终产物的结构及电化学性能的影响。采用X射线衍射(XRD)表征LixNi0.5Mn0.5O2材料的结构,使用充放电实验、EIS及CV研究了LixNi0.5Mn0.5O2的电化学性能。结果表明,x为1.10时材料具有良好的层状特征,且材料中锂/镍的混排程度最小。x为1.10时材料内阻小,有更好的循环稳定性和可逆性。在测试温度55℃和电压2.0~4.5V范围内,材料的首次放电比容量达到了239.6mAh/g,在循环20周后,容量保持率为98.2%。  相似文献   

12.
Lead-free (1 − x)Bi0.47Na0.47Ba0.06TiO3-xKNbO3 (BNBT-xKN, x = 0-0.08) ceramics were prepared by ordinary ceramic sintering technique. The piezoelectric, dielectric and ferroelectric properties of the ceramics are investigated and discussed. The results of X-ray diffraction (XRD) indicate that KNbO3 (KN) has diffused into Bi0.47Na0.47Ba0.06TiO3 (BNBT) lattices to form a solid solution with a pure perovskite structure. Moderate additive of KN (x ≤ 0.02) in BNBT-xKN ceramics enhance their piezoelectric and ferroelectric properties. Three dielectric anomaly peaks are observed in BNBT-0.00KN, BNBT-0.01KN and BNBT-0.02KN ceramics. With the increment of KN in BNBT-xKN ceramics, the dielectric anomaly peaks shift to lower temperature. BNBT-0.01KN ceramic exhibits excellent piezoelectric properties and strong ferroelectricity: piezoelectric coefficient, d33 = 195 pC/N; electromechanical coupling factor, kt = 58.9 and kp = 29.3%; mechanical quality factor, Qm = 113; remnant polarization, Pr = 41.8 μC/cm2; coercive field, Ec = 19.5 kV/cm.  相似文献   

13.
采用真空电弧熔炼制备了Al0.5Nb1.5TiV2Zr0.5高熵合金,并研究了其微观组织、密度及力学性能。结果表明,Al0.5Nb1.5TiV2Zr0.5合金由为90.6%(体积分数)的体心立方相和9.4%(体积分数)的C14-Laves第二相组成。合金基体相富含Ti和V,第二相富含Al和Zr。合金的密度为6284 kg/m3,维氏硬度为5197.9 MPa。合金的屈服强度随温度升高而降低,由室温下1082.9 MPa降低到1073 K下的645.0MPa。压缩应变由室温下的27.20%降低到873 K下的14.94%,这与合金中原子间的相互作用力随温度升高而降低有关。在1073 K时合金应变超过50%,表现出良好的塑性而未发生断裂。压缩测试结果表明,合金韧脆转变温度在873~1073 K之间。  相似文献   

14.
The perovskite compound Tb0.5Sr0.5CoO3 has been prepared and studied for the first time. We report here the structural and magnetic properties of the compound using the DC magnetization and powder neutron diffraction techniques. The compound is found to be orthorhombic with Pbnm space group. The magnetic ground state of the system is ferromagnetic with Tc = 120 K. The ordered magnetic moment is found to be 1.57 (4) μB/Co ion at 12 K along the crystallographic b-axis. The observed effective paramagnetic moment μeff = 2.54 μB/f.u. The role of ionic size effect on the magnetic and transport properties of the compound through the variation of CoOCo bond angles is highlighted.  相似文献   

15.
Plate-like NaNbO3 (NN) particles were used as the raw material to fabricate (1 − x)[0.93 K0.48Na0.52Nb O3-0.07Li(Ta0.5Nb0.5)O3]-xNaNbO3 lead-free piezoelectric ceramics using a conventional ceramic process. The effects of NN on the crystal structure and piezoelectric properties of the ceramics were investigated. The results of X-ray diffraction suggest that the perovskite phase coexists with the K3Li2Nb5O15 phase, and the tilting of the oxygen octahedron is probably responsible for the evolution of the tungsten-bronze-typed K3Li2Nb5O15 phase. The Curie temperature (TC) is shifted to lower temperature with increasing NN content. (1 − x)[0.93 K0.48Na0.52NbO3-0.07Li(Ta0.5Nb0.5)O3]-xNaNbO3 ceramics show obvious dielectric relaxor characteristics for x > 0.03, and the relaxor behavior of ceramics is strengthened by increasing NN content. Both the electromechanical coupling factor (kp) and the piezoelectric constant (d33) decrease with increasing amounts of NN. 0.01-0.03 mol of plate-like NaNbO3 in 0.93 K0.48Na0.52NbO3-0.07Li(Ta0.5Nb0.5)O3 gives the optimum content for preparing textured ceramics by the RTGG method.  相似文献   

16.
Mono-disperse Ni0.5Zn0.5Fe2O4 spinel ferrite particles have been synthesized directly via the hydrothermal method using sodium dodecyl sulfate (SDS) as surfactant. Particle size could be varied from 6 to 19 nm by changing the experiment parameters. X-ray diffraction, high resolution TEM images confirmed the high crystallinity of ferrite nanocrystals. The effects of precursor suspension pH value, reaction temperature and surfactant (SDS) concentration on phase purity, particle size and dispersed property were discussed. The results indicated that mono-disperse Ni0.5Zn0.5Fe2O4 spinel ferrite nanoparticle had been obtained at pH value range (8–9), reaction temperature (90 °C) and moderate SDS concentration (>0.2 mM). The magnetic measurement shows that as prepared Ni0.5Zn0.5Fe2O4 nanoparticle possesses good super-paramagnetic behavior. We also put forward a primary experimental model to shed light on the controllability of the monodispersity of the nanosized particles.  相似文献   

17.
Aurivillius SrBi2(Nb0.5Ta0.5)2O9 (SBNT 50/50) ceramics were prepared using the conventional solid-state reaction method. The obtained samples were thermally modified in high vacuum to study the influence of the formed defects on the dielectric and electrical properties of the samples. Scanning electron microscopy with an energy dispersion X-ray spectrometer was applied to investigate the grain structure and stoichiometry of the studied ceramics. Their dielectric properties were determined by impedance spectroscopy measurements. A strong low frequency dielectric dispersion was found to exist in this material which was controlled by thermal modification of the tested ceramics. This phenomenon can be ascribed to the presence of ionized space charge carriers such as oxygen and bismuth vacancies. The dielectric relaxation was defined on the basis of an equivalent circuit. Moreover the temperature dependence of various electrical properties was determined and discussed.  相似文献   

18.
Al2O3-Ce0.5Zr0.5O2 catalytic powders were synthesized by the coprecipitation (ACZ-C) and mechanical mixing (ACZ-M) methods, respectively. As-synthesized powders were characterized by XRD, Raman spectroscopy, surface area and thermogravimetric analyses. It was found that the mixing extent of Al3+ ions affected the phase development, texture and oxygen storage capacity (OSC) of the Ce0.5Zr0.5O2 powder. Single phase of ACZ-C could be maintained without phase separation and inhibit α-Al2O3 formation up to 1200 °C. The specific surface area value of ACZ-C (81.5 m2/g) was larger than that of ACZ-M (62.1 m2/g) and Ce0.5Zr0.5O2 (17.1 m2/g) powders, which were calcined at 1000 °C. In comparison with ACZ-C and Al2O3, which were calcined at high temperature (900–1200 °C), it was found that the degradation rate of specific surface area of ACZ-C was lower than that of Al2O3. ACZ-C sample showed a higher thermal stability to resist phase separation and crystallite growth, which enhanced the oxygen storage capacity property for Ce0.5Zr0.5O2 powders.  相似文献   

19.
An inverse spinel-type metal oxide, magnesium-manganese-titanium oxide (Mg2Mn0.5Ti0.5O4), were prepared using the coprecipitation/thermal crystallization method. The extraction/insertion reaction with this material was investigated by X-ray, saturation capacity of exchange, pH titration, and distribution coefficient (Kd) measurement The acid treatments of Mg2Mn0.5Ti0.5O4 caused Mg2 extractions of more than 81%, whereas the dissolutions of Mn4 and Ti4 were less than 10%. The experimental results proved that the acid-treated sample has a capacity of exchange 56 mg·g-1 for Li in the solution. The chemical analysis showed that the Li extraction/insertion progressed mainly by ion-exchange mechanism and surface adsorption.  相似文献   

20.
SrBi2(Ta0.5Nb0.5)2O9 (SBTN) thin films were obtained by polymeric precursor method on Pt/Ti/SiO2/Si(1 0 0) substrates. The film is dense and crack-free after annealing at 700 °C for 2 h in static air. Crystallinity and morphological characteristic were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FEG-SEM) and atomic force microscopy (AFM). The films displayed rounded grains with a superficial roughness of 3.5 nm. The dielectric permittivity was 122 with loss tangent of 0.040. The remanent polarization (Pr) and coercive field (Ec) were 5.1 μC/cm2 and 96 kV/cm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号