首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article investigates the radial extrudate swell and velocity profiles of polystyrene melt in a capillary die of a constant shear‐rate extrusion rheometer, using a parallel coextrusion technique. An electro‐magnetized capillary die was used to monitor the changes in the radial extrudate swell profiles of the melt, which is relatively novel in polymer processing. The magnetic flux density applied to the capillary die was varied in a parallel direction to the melt flow, and all tests were performed under the critical condition at which sharkskin and melt fracture did not occur in the normal die. The experimental results suggest that the overall extrudate swell for all shear rates increased with increasing magnetic flux density to a maximum value and then decreased at higher densities. The maximum swelling peak of the melt appeared to shift to higher magnetic flux density, and the value of the maximum swell decreased with increasing wall shear rate and die temperature. The effect of magnetic torque on the extrudate swell ratio of PS melt was more pronounced when extruding the melt at low shear rates and low die temperatures. For radial extrudate swell and velocity profiles, the radial swell ratio for a given shear rate decreased with increasing r/R position. There were two regions where the changes in the extrudate swell ratio across the die diameter were obvious with changing magnetic torque and shear rate, one around the duct center and the other around r/R of 0.65–0.85. The changes in the extrudate swell profiles across the die diameter were associated with, and can be explained using, the melt velocity profiles generated during the flow. In summary, the changes in the overall extrudate swell ratio of PS melt in a capillary die were influenced more by the swelling of the melt around the center of the die. Polym. Eng. Sci. 44:2298–2307, 2004. © 2004 Society of Plastics Engineers.  相似文献   

2.
A study on the melt elasticity behavior and extrudate characteristics of melts of rigid poly(vinyl chloride), PVC, and rigid poly(vinyl chloride)/epoxidized natural rubber (ENR) miscible blends were conducted. Extrusion studies were carried out in a capillary rheometer and examinations of the surface characteristics of the extrudate were made by taking photomicrographs in a scanning electron microscope. The anomalous behavior in the die swell ratio of rigid PVC arising from the particle agglomerates continued in its blends up to 50 wt% composition of ENR. Temperature independence for high ENR blends was noted for the principal normal stress difference and elastic shear modulus, when shear stress was held constant. Recoverable shear strain and die swell ratio behaved identically in terms of blend composition and processing temperature. Factors which control the extrudate distortion and melt fracture of the melts of rigid PVC/ENR systems were fusion of particle agglomerates and strength of melts. Diamond cavitations were typical of the extrudate surface of PVC melts as those of the fracture surface of the tensile failure of PVC. Conditions to obtain a smooth extrudate surface of rigid PVC melts in blends with ENR have been found to be the low ENR content, low shear rate, or stress and high processing temperature.  相似文献   

3.
The extrudate swell behavior and extrudate texture of various thermoplastic melts, namely, polystyrene (PS), low‐density polyethylene (LDPE), acrylonitrile‐butadiene styrene (ABS) copolymer, poly(vinyl chloride) (PVC), and their blends, were examined weith a magnetic die system in a constant‐shear‐rate capillary rheometer at a shear rate range 5–28 s?1 and a temperature range 170–230 °C. The extrudate swell results obtained from the magnetic die were then compared with those produced by a nonmagnetic die. The results showed that the extrudate swell increased with shear rate, but decreased with temperature. In a pure polymer system, up to 25% increase in the extrudate swell was observed with the application of the magnetic field to the PS melt, and the effect decreased in the order ABS > LDPE > PVC. The extrudate swell changes were associated with the changes in rheological properties of the melts. The extrudate textures of the ABS and PVC melts were improved by the magnetic field. In PS/LDPE or PS/ABS blend, it was found that the magnetic die resulted in higher values of the extrudate swell than the nonmagnetic die for all blends, the magnetic effect being less as the LDPE or ABS content was increased. For PS/LDPE system, the extrudate swell of the PS melt did not change much with addition of 20% LDPE, but slightly decreased at the LDPE loading of 40%. At higher LDPE loadings, the extrudate swell increased towards the value of the pure LDPE melt. For PS/ABS system, the extrudate swell ratio progressively decreased with increasing ABS content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 509–517, 2002  相似文献   

4.
Study of melts rheological properties of unvulcanized and dynamically vulcanized polypropylene (PP)/ethylene‐propylene‐diene rubber (EPDM) blends, at blending ratios 10–40 wt %, EPDM, are reported. Blends were prepared by melt mixing in an internal mixer at 190°C and rheological parameters have been evaluated at 220°C by single screw capillary rheometer. Vulcanization was performed with dimethylol phenolic resin. The effects of (i) blend composition; (ii) shear rate or shear stress on melt viscosity; (iii) shear sensitivity and flow characteristics at processing shear; (iv) melt elasticity of the extrudate; and (v) dynamic cross‐linking effect on the processing characteristics of the blends were studied. The melt viscosity increases with increasing EPDM concentration and decreased with increasing intensity of the shear mixing for all compositions. In comparison to the unvulcanized blends, dynamically vulcanized blends display highly pseudoplastic behavior provides unique processing characteristics that enable to perform well in both injection molding and extusion. The high viscosity at low shear rate provides the integrity of the extrudate during extrusion, and the low viscosity at high shear rate enables low injection pressure and less injection time. The low die‐swell characteristics of vulcanizate blends also give high precision for dimensional control during extrusion. The property differences for vulcanizate blends have also been explained in the light of differences in the morphology developed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1488–1505, 2000  相似文献   

5.
This article proposes a new experimental technique to simultaneously measure radial die swell and velocity profiles of polystyrene melt flowing in the capillary die of a constant shear rate rheometer. The proposed technique was based on parallel coextrusion of colored melt‐layers into uncolored melt‐stream from the barrel into and out of the capillary die. The size (thickness) ratio of the generated melt layers flowing in and out of the die was monitored to produce the extrudate swell ratio for any given radial position across the die diameter. The radial velocity profiles of the melt were measured by introducing relatively light and small particles into the melt layers, and the times taken for the particles to travel for a given distance were measured. The proposed experimental technique was found to be both very simple and useful for the simultaneous and accurate measurement of radial die swell and velocity profiles of highly viscous fluids in an extrusion process. The variations in radial die swell profiles were explained in terms of changes in melt velocity, shear rate, and residence time at radial positions across the die. The radial die swell and velocity profiles for PS melt determined experimentally in this work were accurate to 92.2% and 90.8%, respectively. The overall die swell ratio of the melt ranged from 1.25 to 1.38. The overall die swell ratio was found to increase with increasing piston speed (shear rate). The radial extrudate swell profiles could not be reasoned by the shear rate change, but were closely linked with the development of the velocity profiles of the melt in the die. The die swell ratio was high at the center (~1.9) and low (~0.9) near the die wall. The die swell ratio at the center of the die reduced slightly as the piston speed was increased. Polym. Eng. Sci. 44:1960–1969, 2004. © 2004 Society of Plastics Engineers.  相似文献   

6.
肖兵  邓小珍 《中国塑料》2015,29(12):77-81
基于Bird-Carreau黏度模型,运用有限元方法对三维等温微管挤出成型流动模型进行了数值分析,主要研究了管壁厚度对微管挤出成型过程中挤出胀大、速度分布、剪切速率和口模压降等重要指标的影响。结果表明,当熔体入口体积流率相等时,随着管壁厚度的增大,挤出物挤出胀大率和横截面尺寸变化量增大;口模出口端面上熔体的二次流动增强,但挤出速度和剪切速率减小;熔体在口模内的压力降明显下降;适当增加管壁厚度,有利于提高微管挤出质量。  相似文献   

7.
The extrudate swell ratio of five different thermoplastic melts flowing in a constant shear rate rheometer having a capillary die with and without application of magnetic field was studied. The effects of the magnetic flux direction and density, die temperature, and wall shear rate on the extrudate swell and flow properties were investigated. The experimental results suggested that an increasing wall shear rate increased the swelling ratio for the polystyrene (PS), LLDPE, and PVC melts, but the opposite effect was observed for the ABS and PC melts. The extrudate swell ratio for the PS, ABS, PC, and LLDPE melts decreased with increasing die temperature, the effect being reversed for the PVC melt. Thermoplastic melts having high benzene content in the side‐chain and exhibiting anisotropic character were apparently affected by the magnetic field, the extrudate swell ratio increasing with magnetic flux density. The effect of the magnetic field on the extrudate swell ratio decreased in the order of PS → ABS → PC. The extrudate swell ratio for the co‐parallel magnetic field system was slightly higher than that for the counter‐parallel magnetic field system at a high magnetic flux density. POLYM. ENG. SCI., 47:270–280, 2007. © 2007 Society of Plastics Engineers.  相似文献   

8.
A fundamental study of bubble morphology development and apparent rheological properties in foam extrusion is reported. The influence of melt temperature, die length/diameter ratio, and blowing agent level on the morphology are considered. Measurements of the influence of blowing agent on viscosity, extrudate swell, and end-pressure losses are described. The viscosity is reduced, but extrudate swell is increased. End-pressure losses were found to become very large relative to the die wall shear stress at low extrusion rates. These results were interpreted in terms of bubble development. The filling of molds by foaming melts was observed and is described.  相似文献   

9.
The objective of this study was to determine the die swell behavior of a polymer melt and to design a die for forming a polymeric extrudate with a desired shape using profile extrusion. Polystyrene pellets were chosen to perform the profile extrusion experiments. First, the polystyrene pellets were melted and pushed through a quarter ring profile. The profile of the swelled extrudate agreed with the numerical predictions. A modified die was designed to produce a quarter ring profile extrudate based on the direct extrusion problem (DEP) prediction. Polystyrene pellets were also melted and pushed through the modified die. The experimental results were close to the computational results. The melting temperature, die length, and melting residence time affect die swell behavior. The die swell ratio becomes smaller as the melting temperature and melting residence time are increased. As the die length is increased, the die swell ratio is lowered. According to the die geometry predictions, an extrudate with the desired profile can be made precisely.  相似文献   

10.
Methyl methacrylate and ethylacrylate (MMA‐co‐EA) and methyl methacrylate and butylacrylate (MMA‐co‐BA) copolymeric processing aids were introduced into poly(vinyl chloride) (PVC)/33.3 wt % wood–sawdust composites containing 0.6 and 2.4 phr of calcium stearate lubricant. The properties of the composites were monitored in terms of processibility, rheology, thermal and structural stability, and mechanical properties. It was found that the mixing torque, wall shear stress, and extrudate swell ratio increased with increasing processing aid content because of increased PVC entanglement. MMA‐co‐BA (PA20) was found to be more effective than MMA‐co‐EA (K120 and K130), this being associated with the flexibility of the processing aids, and the dipole–dipole interactions between sawdust particles and polymeric processing aids. The sharkskin characteristic of the composite extrudate at high extrusion rate was moderated by the presence of processing aids. Adding the acrylic‐based processing aids and lubricant into PVC/sawdust composites improved the thermal and structural stability of the composites, which were evidenced by an increase in glass transition and decomposition temperatures and a decrease in polyene sequences, respectively. The changes in the mechanical properties of the composites involved a composite homogeneity, which was varied by degree of entanglement and the presence of wood sawdust, and un‐reacted processing aids left in the composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 782–790, 2004  相似文献   

11.
This study examined the effect of Poly[vinyl chloride] (PVC) formulation on the cell morphology and density of rigid PVC foamed with supercritical CO2 in a continuous extrusion process. Cell morphology and the density of foamed samples were controlled by blending two acrylic‐based processing aids (all‐acrylic foam modifier K‐400 and acrylic‐based impact modifier KM‐334), using a mixture design. The effect of blend ratios on the fusion and die swell behaviors of PVC was investigated by means of a torque rheometer and on a single‐screw extrusion capillary rheometer, respectively. Fusion was promoted as the relative amount of the all‐acrylic foam modifier increased in the blends. Similarly, the elastic constant of PVC, derived from the linear relationship between the die swell and apparent shear stress, increased upon increasing the relative amount of the all‐acrylic foam modifier in the blends, thus suggesting an increase in the melt elasticity of PVC. Microcellular rigid PVC foams with densities of approximately 0.15 g/cm3 and a tenfold volume expansion were produced. An optimum ratio of impact modifier to all‐acrylic foam modifier of 1:3 was found to maximize the foam expansion. Using impact modifier alone or all‐acrylic foam modifier alone yielded expansions considerably lower than that achieved with the 1:3 blend. The experimental results indicated that fusion is not the only criterion to control the cell morphology and density achieved in microcellular rigid PVC foams. The melt must have a viscosity low enough to allow bubble formation and growth, as well as elasticity high enough to prevent cell coalescence. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

12.
混炼胶熔体的挤出膨胀研究   总被引:3,自引:0,他引:3       下载免费PDF全文
赵良知  唐国俊  郑融 《橡胶工业》1996,43(11):649-652
依据粘弹性熔体流变学理论,采用张量分析方法,研究了混炼胶熔体在挤出过程中的膨胀行为。推导出以剪切形变为主,挤出物膨胀率;以拉伸形变为主,挤出物膨胀率。在理论上进一步论证收敛拉伸流变是导致混炼胶熔体挤出物膨胀率较大的原因。  相似文献   

13.
Studies have been made on the melt rheological properties of poly(vinyl chloride) (PVC) with copolymers of methyl methacrylate (MMA) and methyl acrylate (MA), ethyl acrylate (EA), butyl acrylate (BA), and 2-ethyl hexyl acrylate (EHA) at a blending ratio of 80:20. Effect of blend composition on shear stress–shear rate, melt viscosity, melt elasticity, and extrudate distortion have been studied. A significant decrease in the melt viscosity is observed on incorporation of low Tg, acrylate copolymers such as those with BA and EHA, thereby reducing the processing temperature. First normal stress and die swell ratio also decreases with an increase in the side chains of acrylate copolymer. PVC blended with P(MMA-co-BA) and P(MMA-co-EHA) is sensitive to both temperature and shear stress.  相似文献   

14.
The effect of degree of polymerization (DP) on the gelation and flow processability of poly(vinyl chloride) (PVC) was studied. Sheets with adjusted degree of gelation were prepared by rolling rigid pipe formulation suspension PVC compounds with DPs of 800, 1050 and 1300 by changing the milling temperature. Their degrees of gelation were measured with DSC and their capillary flow properties were measured with a capillary rheometer at 150, 170 and 190°C and the effect of DP on the relation between gelation and flow processabilities was studied. Because of the higher shearing heat during milling, the sample with the higher DP had a higher history temperature and thus tended to show a higher degree of gelation. The viscosity increased as the gelation increased. The dependency of viscosity on DP was higher at higher milling and extrusion temperatures and thus at a higher degree of gelation and a lower shear rate. This was assumed to be attributed to the more prominent uniform molecular flow as against the particle flow. The die swell increased with increasing the milling and extrusion temperatures and hence with increasing the gelation. A sample with a lower DP tended to show a larger die swell and this tendency was even more pronounced at the higher extrusion temperature. The melt fracture easily occurred when a sample with advanced gelation was extruded at low temperature. Whereas at low milling temperatures a sample with the lower DP showed a lower critical shear rate at onset of melt fracture, and thus easily generating melt fracture, at high milling temperatures it showed a higher critical shear rate and hence scarcely generated melt fracture. These experimental results were explained by the fact and concept that a sample with a lower DP shows a higher increase in the gelation during extrusion and/or the slighter feature of particle flow as against the uniform molecular flow at the same gelation level. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1915–1938, 2004  相似文献   

15.
Extrusion of a hot polymer melt through a cooler die zone substantially increases the extrudate swell of some thermoplastics. This effect was examined for commercial samples of low-density polyethylene, polypropylene, and polystyrene. Two conflicting effects come into play during extrusion of a thermoplastic. Colder melt temperatures promote increased extrudate swell, but the same conditions also facilitate molecular disentanglement and reduced melt elasticity and die swell. Since the extrusion process itself may affect the relation between die swell and melt temperature, laboratory-scale measurements for the design of processes like blow molding are better carried out with small-scale screw extruders than with capillary rheometers. For some applications it may be advantageous to use a polymer whose die swell is particularly responsive or unresponsive to die temperature variations. The procedure described in this article can be used effectively to monitor this characteristic.  相似文献   

16.
The numerical simulation of extrudate swell is significant in extrusion processing.Precise prediction of extrudate swell is propitious to the control of melt flow and the quality of final products.A mathematical model of three-dimensional(3D)viscoelastic flow through elliptical ring die for polymer extrusion was investigated.The penalty function formulation of viscoelastic incompressible fluid was introduced to the finite element model to analyze 3D extrusion problem.The discrete elastic viscous split stress(DEVSS)and streamline-upwind PetrovGalerkin(SUPG)technology were used to obtain stable simulation results.Free surface was updated by updating the streamlines which needs less memory space.According to numerical simulation results,the effect of zero-shear viscosity and elongation parameter on extrudate swell was slight,but with the increase of volumetric flow rate and relax time the extrudate swell ratio increased markedly.Finally,the numerical simulation of extrudate swell flow for low-density polyethylene(LDPE)melts was investigated and the results agreed well with others’work.These conclusions provided quantitative basis for the forecasting extrudate swell ratio and the controlling of extrusion productivity shape.  相似文献   

17.
Processing aids are an important class of additives for poly(vinyl chloride) (PVC). At relatively low concentration, processing aids enable the melt processing of rigid PVC and enlarge its processing windows. Discussed in this presentation are some major functions of processing aids, such as promoting PVC fusion, modifying PVC's melt rheology, and lubricating to prevent adherence of PVC melt to the processing equipment. Some examples are given to show the effects of processing aids on PVC die swell, melt fracture, melt viscosity, and PVC fusion. Commercial sources of various processing aids and typical PVC formulations for various applications are also discussed.  相似文献   

18.
The melt flow behavior of straight emulsion-polymerized PVC in a capillary extrusion rheometer has been found to depend upon both the molecular weight and the particle size of the sample. Observations of flow-rate, post-extrusion swell, and extrudate appearance, as functions of extrusion temperature and pressure, suggest that both molecular deformation and particle slippage are involved in the flow mechanism. The relative importance of these two modes of flow varies with extrusion conditions and with the PVC molecular weight and particle size. Particle slippage is favored by large particle size, high molecular weight, and low temperature and by a shear stress above a critical yield value. Apparent melt viscosity, swelling, and roughness are minimized under conditions corresponding to the maximum contribution of particle slippage. In the proper range of temperature and shear rate, straight emulsion PVC yields smooth, low-swell extrudates of excellent physical properties.  相似文献   

19.
Experimental investigations were performed to see how the die exit geometry and the extrusion velocity influence on extrudate swell and melt fracture for several polymer melts [low-density polyethylene, styrene-butadiene rubber (SBR) and SBR/HAF (carbon black) compound]. Four different types of die exit geometry were considered; 0° (symmetric. usual capillary die), and 30°, 45° and 60° (asymmetric dies) were chosen for the die exit angle. Extrudate diameters were measured without draw-down under isothermal condition. Polymer melts were extruded into an oil that has the same density and temperature as those of the extrudate. Extrudate swells from dies with different diameters were correlated with volumetric flow rates. It was observed that the extrudate swell increases with increasing volumetric flow rate and exhibits through a minimum value at about 45° die exit angle. As to the fracture phenomena, it was observed that the critical shear for the onset of melt fracture increases with the increasing die exit angle up to 45°. However, for 60° die exit angle, the onset of melt fracture is again similar to that of 0° exit angle.  相似文献   

20.
The die swell behavior of PVC melts is a manifestation of melt elasticity and is of considerable commercial as well as fundamental importance. This behavior is a critical issue in extrusion blow molding application where die swell (i.e. parison thickness) needs to be controlled. Advantageously, the addition of high molecular weight acrylic processing aids to PVC provides better die swell control, thus, improving dramatically the processability of PVC. Hence, knowledge of molecular weight variables of such acrylic processing aids is important from both the commercial and rheological point of view. Various acrylic processing aids were prepared by polymerization designed to provide systematic variation of molecular parameters. Molecular weight distribution of the polymers was characterized by GPC, and their die swell behavior in a typical PVC blow molding formulation was determined at 200°C over various range of residence times using different L/D capillary dies. The results are presented showing effects of specific molecular variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号