首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field measurements of the concentration and activity size distribution of radon decay products were conducted in a one-story house located in the Princeton, NJ area. Radon concentration and particle number concentration were also measured. The concentration and activity-weighted size distribution of radon decay products were determined using a microcomputer-controlled, semi-continuous screen diffusion battery system with 6 parallel sampler/detector units. A condensation nuclei counter was used for the measurements of indoor panicle number concentration. Several measurements were made in the living room as well as more than one hundred measurements in the master bedroom of the Princeton house. Aerosols were generated from taking a shower, burning a candle, smoldering a cigarette, vacuuming, and cooking. Therefore, the influence of various indoor panicle sources on the behavior of radon decay products was investigated. With panicles generated from typical household activities, Potential Alpha Energy Concentration (PAEC) increases and the unattached fraction decreases. Larger panicles generated from cigarette smoke and cooking dramatically shifted most of the radon decay products into the attached mode (15-500 nm). With regard to the higher attachment rate, the size distributions of radon decay products remained stable for long periods of time after particle generation. On the other hand, aerosols produced from candle burning and vacuuming were much smaller, with an average attachment diameter of 15 nm. These panicles did decrease the unattached fraction, especially during the aerosol generation period. However, the size distributions of radon decay products returned to the background condition within ISO minutes after the end of particle generation. In these cases, the panicles had a higher deposition rate and a lower attachment rate. The dose of alpha radiation per unit radon concentration resulting from each of these aerosol conditions was calculated using the measured activity size distributions and the most recent James dosimetric model. These doses to basal cells at a breathing rate of 0.45 m3 hr1 ranged from 3 to 14 μGy Bq?1 hr while the dose to secretory cells at a breathing rate of 1.5 m3 hr1 ranged from 13 to 77 μGy Bq?1 hr for the various aerosol conditions.  相似文献   

2.
This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250 m downwind of the I‐80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir‐fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year‐round operation in California. Exhaust ventilation without enhanced filtration provided indoor PM2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection, whereas supply MERV16 filtration reduced PM2.5 by 97‐98% relative to outdoors. Supply filtration systems used little energy but provided no benefits for indoor‐generated particles. Systems with MERV13‐16 filter in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM2.5 by 93‐98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM2.5. Indoor ozone was 3‐4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM2.5 by 25‐75% when operated over the hour following cooking. The energy for year‐round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.  相似文献   

3.
室内氡(含氡子体)污染的传播与粒子(悬浮颗粒)污染在室内的传播过程相关,通风空调气流对氡及粒子污染的传播影响很大。本文详细阐述了室内氡和粒子的来源和特点、氡及其子体在空气中的传播机理以及除去方法,分析了通风空调系统对室内氡及子体传输的影响、以及氡在空气中迁移的动力学模型,分析比较了通风室内氡及粒子污染物迁移沉降过程的数值模拟方法,提出了空调气流环境下氡及粒子污染传播及其数值模拟中的关键问题。  相似文献   

4.
Particulate matter is linked to adverse health effects, however, little is known about health effects of particles emitted from typical indoor sources. We examined acute health effects of short-term exposure to emissions from cooking and candles among asthmatics. In a randomized controlled double-blinded crossover study, 36 young non-smoking asthmatics attended three exposure sessions lasting 5 h: (a) air mixed with emissions from cooking (fine particle mass concentration): (PM2.5: 96.1 μg/m3), (b) air mixed with emissions from candles (PM2.5: 89.8 μg/m3), and c) clean filtered air (PM2.5: 5.8 μg/m3). Health effects (spirometry, fractional exhaled Nitric Oxide [FeNO], nasal volume and self-reported symptoms) were evaluated before exposure start, then 5 and 24 h after. During exposures volatile organic compounds (VOCs), particle size distributions, number concentrations and optical properties were measured. Generally, no statistically significant changes were observed in spirometry, FeNO, or nasal volume comparing cooking and candle exposures to clean air. In males, nasal volume and FeNO decreased after exposure to cooking and candles, respectively. Participants reported additional and more pronounced symptoms during exposure to cooking and candles compared to clean air. The results indicate that emissions from cooking and candles exert mild inflammation in asthmatic males and decrease comfort among asthmatic males and females.  相似文献   

5.
W. J. Fisk 《Indoor air》2013,23(5):357-368
The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, for example, 7% to 25%. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air.  相似文献   

6.
A two-screen sampler (an effective dosimeter), with a collection efficiency matched to the particle size response of the radon progeny dose conversion factors (DCF), obtained from the ICRP respiratory tract model as implemented in the computer code RADEP, has been developed to assess the inhalation dose from exposure to radon progeny. In order to evaluate the performance of this sampler, the second stage of a six-stage wire screen diffusion battery was designed to operate as an Effective Dosimeter. This hybrid system allowed two methods for the determination of the radon progeny DCF. For the first method, the activity size distributions, measured using the diffusion battery, were used to obtain a size-weighted DCF. A second determination of DCF was obtained directly from the fraction collected by the Effective Dosimeter. The hybrid diffusion battery was used to measure radon progeny in the Fairy Cave, Buchan, Victoria at 20-min intervals over a 30-h period. This cave had radon concentrations exceeding 2000 Bq m(-3), with low aerosol concentration and low ventilation rates. The measurements were analysed for the radon progeny PAEC, the activity size distribution, the size-weighted DCF and the effective dosimeter collected fraction. The Effective Dosimeter DCFs were determined from the collected fraction using firstly a simple linear function and then using a more complex polynomial function to correct for residual errors. For the linear factor alone, the calculated Effective Dosimeter DCFs were on average 11% lower than the equivalent size-weighted DCF values. The agreement using the polynomial function was improved markedly, with a linear regression of the DCF yielding a fitted ratio of 0.965, with an R value of 0.99. For this study, the use of the ICRP conversion convention to estimate the occupational exposure to the tour guides working in the Fairy Cave would under estimate the effective dose by up to a factor of 2.  相似文献   

7.
Emissions from candles are of concern for indoor air quality. In this work, five different types of pillar candles were burned under steady burn conditions in a new laboratory scale system for repeatable and controlled comparison of candle emissions (temperature ~25°C, relative humidity ~13%, O2 >18%, air exchange rate 1.9 h−1). Burn rate, particle number concentrations, mass concentrations, and mode diameters varied between candle types. Based on the results, the burning period was divided in two phases: initial (0–1 h) and stable (1–6 h). Burn rates were in the range 4.4–7.3 and 4.7–7.1 g/h during initial and stable phase, respectively. Relative particle number emissions, mode diameters, and mass concentrations were higher during the initial phase compared to the stable phase for a majority of the candles. We hypothesize that this is due to elevated emissions of wick additives upon ignition of the candle together with a slightly higher burn rate in the initial phase. Experiments at higher relative humidity (~40%) gave similar results with a tendency toward larger particle sizes at the higher relative humidity. Chemical composition with respect to inorganic salts was similar in the emitted particles (dry conditions) compared to the candlewicks, but with variations between different candles.  相似文献   

8.
We investigated the effect of indoor sources including Chinese-style cooking, incense burning, cleaning, and people's moving on indoor particle size distributions and concentrations and calculated the personal exposure dose rates in the human respiratory tract (HRT) using time-activity and indoor and outdoor particle size distribution data collected from a traditional Taiwanese residence in central Taiwan region. We applied a simple size-dependent indoor air quality model associated with a compartmental lung model to determine the source emission rates and exposure dose. Cooking and incense burning had size-integrated source emission rates of 0.042+/-0.024 (mean+/-S.D.) and 0.038+/-0.026 particles s(-1), respectively. Cooking and incense burning were significant contributors to indoor particle levels for particle sizes from 0.5 to 5 microm in that the percent contributions to indoor concentrations were 0.334+/-0.02 and 0.267+/-0.035, respectively. Our results demonstrated that extrathoracic (ET) region had higher average PM mass lung/indoor ratio (0.77) than that of bronchial (BB) (0.52), bronchiolar (bb) (0.27) and alveolar-interstitial (AI) (0.14) regions from both cooking and incense burning events. The average integrated deposition dose rates (particles cm(-2) h(-1)) of 24.11 in ET, 4.68 in BB, and 7.89 in bb were higher than that of 0.011 in AI for both cooking and incense burning events. This research illustrates that exposure assessment based on time-activity and real-time behavior of particle data can provide valuable information on the fate of indoor particles and hazard to human health.  相似文献   

9.
Some indoor activities increase the number concentration of small particles and, hence, enhance the dose delivered to the lungs. The received particle dose indoors may exceed noticeably the dose from ambient air under routine in-house activities like cooking. In the present work, the internal dose by inhalation of ultrafine and fine particles is assessed, using an appropriate mechanistic model of lung deposition, accommodating aerosol, and inhalation dynamics. The analysis is based on size distribution measurements (10-350 nm) of indoor and outdoor aerosol number concentrations in a typical residence in Athens, Greece. Four different cases are examined, namely, a cooking event, a no activity period indoors and the equivalent time periods outdoors. When the cooking event (frying of bacon-eggs with a gas fire) occurred, the amount of deposited particles deep into the lung of an individual indoors exceeded by up to 10 times the amount received by an individual at the same time period outdoors. The fine particle deposition depends on the level of physical exertion and the hygroscopic properties of the inhaled aerosol. The dose is not found linearly dependant on the indoor/outdoor concentrations during the cooking event, whereas it is during the no activity period. PRACTICAL IMPLICATIONS: The necessity for determining the dose in specific regions of the human lung, as well as the non-linear relationship between aerosol concentration and internal dose makes the application of dosimetry models important. Lung dose of fine and ultrafine particles, during a cooking event, is compared with the dose at no indoor activity and the dose received under outdoor exposure conditions. The dose is expressed in terms of number or surface of deposited particles. This permits to address the dosimetry of very small particles, which are released by many indoor sources but represent a slight fraction of the particulate matter mass. The enhancement of the internal dose resulting from fine and ultrafine particles generated during the cooking event vs. the dose when no indoor source is active is assessed. The results for those cases are also compared with the dose calculated for the measured aerosol outdoors.  相似文献   

10.
Afshari A  Matson U  Ekberg LE 《Indoor air》2005,15(2):141-150
Humans and their activities are known to generate considerable amounts of particulate matter indoors. Some of the activities are cooking, smoking and cleaning. In this study 13 different particle sources were for the first time examined in a 32 m3 full-scale chamber with an air change rate of 1.7 +/- 0.1/h. Two different instruments, a condensation particle counter (CPC) and an optical particle counter (OPC) were used to quantitatively determine ultrafine and fine particle emissions, respectively. The CPC measures particles from 0.02 microm to larger than 1.0 microm. The OPC was adjusted to measure particle concentrations in eight fractions between 0.3 and 1.0 microm. The sources were cigarette side-stream smoke, pure wax candles, scented candles, a vacuum cleaner, an air-freshener spray, a flat iron (with and without steam) on a cotton sheet, electric radiators, an electric stove, a gas stove, and frying meat. The cigarette burning, frying meat, air freshener spray and gas stove showed a particle size distribution that changed over time towards larger particles. In most of the experiments the maximum concentration was reached within a few minutes. Typically, the increase of the particle concentration immediately after activation of the source was more rapid than the decay of the concentration observed after deactivation of the source. The highest observed concentration of ultrafine particles was approximately 241,000 particles/cm3 and originated from the combustion of pure wax candles. The weakest generation of ultrafine particles (1.17 x 10(7) particles per second) was observed when ironing without steam on a cotton sheet, which resulted in a concentration of 550 particles/cm3 in the chamber air. The highest generation rate (1.47 x 10(10) particles per second) was observed in the radiator test. PRACTICAL IMPLICATIONS: Humans and their activities are known to generate substantial amounts of particulate matter indoors and potentially they can have a strong influence on short-term exposure. In this study a quantitative determination of the emissions of fine and ultrafine particles from different indoor sources was performed. The aim is a better understanding of the origin and fate of indoor particles. The results may be useful for Indoor Air Quality models.  相似文献   

11.
We studied the effect of ventilation and air filtration systems on indoor air quality in a children's day-care center in Finland. Ambient air nitrogen oxides (NO, NO2) and particles (TSP, PM10) were simultaneously measured outdoors and indoors with automatic nitrogen oxide analyzers and dust monitoring. Without filtration nitrogen oxides and particulate matter generated by nearby motor traffic penetrated readily indoors. With chemical filtration 50-70% of nitrogen oxides could be removed. Mechanical ventilation and filtration also reduced indoor particle levels. During holidays and weekends when there was no opening of doors and windows and no particle-generating activity indoors, the indoor particle level was reduced to less than 10% of the outdoor level. At times when outdoor particle concentrations were high during weekdays, the indoor level was about 25% of the outdoor level. Thus, the possible adverse health effects of nitrogen oxides and particles indoors could be countered by efficient filtration. We also showed that inclusion of heat recovery equipment can make new ventilation installations economical.  相似文献   

12.
Indoor particle number and PM2.5 concentrations were investigated in a radio station surrounded by busy roads. Two extensive field measurement campaigns were conducted to determine the critical parameters affecting indoor air quality. The results indicated that indoor particle number and PM2.5 concentrations were governed by outdoor air, and were significantly affected by the location of air intake and design of HVAC system. Prior to the upgrade of the HVAC system and relocation of the air intake, the indoor median particle number concentration was 7.4×103 particles/cm3 and the median PM2.5 concentration was 7 μg/m3. After the relocation of air intake and the redesign of the HVAC system, the indoor particle number concentration was between 2.3×103 and 3.4×103 particles/cm3, with a median value of 2.7×103 particles/cm3, and the indoor PM2.5 concentration was in the range of 3–5 μg/m3, with a median value of 4 μg/m3. By relocating the air intake of the HVAC, the outdoor particle number and PM2.5 concentrations near the air intake were reduced by 35% and 55%, respectively. In addition, with the relocation of air intake and the redesign of the HVAC system, the particle number penetration rate was reduced from 42% to 14%, and the overall filtration efficiency of the HVAC system (relocation of air intake, pre-filter, AHU and particle losses in the air duct) increased from 58% to 86%. For PM2.5, the penetration rate after the upgrade was approximately 18% and the overall filtration efficiency was 82%. This study demonstrates that by using a comprehensive approach, including the assessment of outdoor conditions and characterisation of ventilation and filtration parameters, satisfactory indoor air quality can be achieved, even for those indoor environments facing challenging outdoor air conditions.  相似文献   

13.
Economizer use in data centers is an energy efficiency strategy that could significantly limit electricity demand in this rapidly growing economic sector. Widespread economizer implementation, however, has been hindered by potential reliability concerns associated with exposing information technology equipment to particulate matter of outdoor origin. This study explores the feasibility of using economizers in data centers to save energy while controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at an operating northern California data center equipped with an economizer under varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to levels when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh any increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration could reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design.  相似文献   

14.
W. J. Fisk  W. R. Chan 《Indoor air》2017,27(5):909-920
This study evaluates the mortality‐related benefits and costs of improvements in particle filtration in U.S. homes and commercial buildings based on models with empirical inputs. The models account for time spent in various environments as well as activity levels and associated breathing rates. The scenarios evaluated include improvements in filter efficiencies in both forced‐air heating and cooling systems of homes and heating, ventilating, and air conditioning systems of workplaces as well as use of portable air cleaners in homes. The predicted reductions in mortality range from approximately 0.25 to 2.4 per 10 000 population. The largest reductions in mortality were from interventions with continuously operating portable air cleaners in homes because, given our scenarios, these portable air cleaners with HEPA filters most reduced particle exposures. For some interventions, predicted annual mortality‐related economic benefits exceed $1000 per person. Economic benefits always exceed costs with benefit‐to‐cost ratios ranging from approximately 3.9 to 133. Restricting interventions to homes of the elderly further increases the mortality reductions per unit population and the benefit‐to‐cost ratios.  相似文献   

15.
Ward M  Siegel JA  Corsi RL 《Indoor air》2005,15(2):127-134
Stand-alone air cleaners may be efficient for rapid removal of indoor fine particles and have potential use for shelter-in-place (SIP) strategies following acts of bioterrorism. A screening model was employed to ascertain the potential significance of size-resolved particle (0.1-2 microm) removal using portable high efficiency particle arresting (HEPA) air cleaners in residential buildings following an outdoor release of particles. The number of stand-alone air cleaners, air exchange rate, volumetric flow rate through the heating, ventilating and air-conditioning (HVAC) system, and size-resolved particle removal efficiency in the HVAC filter were varied. The effectiveness of air cleaners for SIP was evaluated in terms of the outdoor and the indoor particle concentration with air cleaner(s) relative to the indoor concentration without air cleaners. Through transient and steady-state analysis of the model it was determined that one to three portable HEPA air cleaners can be effective for SIP following outdoor bioaerosol releases, with maximum reductions in particle concentrations as high as 90% relative to conditions in which an air cleaner is not employed. The relative effectiveness of HEPA air cleaners vs. other removal mechanisms was predicted to decrease with increasing particle size, because of increasing competition by particle deposition with indoor surfaces and removal to HVAC filters. However, the effect of particle size was relatively small for most scenarios considered here. PRACTICAL IMPLICATIONS: The results of a screening analysis suggest that stand-alone (portable) air cleaners that contain high efficiency particle arresting (HEPA) filters can be effective for reducing indoor fine particle concentrations in residential dwellings during outdoor releases of biological warfare agents. The relative effectiveness of stand-alone air cleaners for reducing occupants' exposure to particles of outdoor origin depends on several factors, including the type of heating, ventilating and air-conditioning (HVAC) filter, HVAC operation, building air exchange rate, particle size, and duration of elevated outdoor particle concentration. Maximum particle reductions, relative to no stand-alone air cleaners, of 90% are predicted when three stand-alone air cleaners are employed.  相似文献   

16.
The main source of high radon concentration indoors is the exhalation of radon from the soil. In the western part of Germany, two interesting regions, “Eifel” and “Hunsrück”, are selected for these radon investigations. The first region is an area with silt and sandstone of low uranium content but with tectonic fractures caused by postvolcanic activity, whereas in the part of the “Hunsrück” under consideration, the uranium concentration in the ground formerly allowed the extraction of uranium ores. An electrostatic deposit of the first radon daughter (Polonium-218-ion) onto a surface barrier detector and the subsequent analysis of the measured alpha spectra enables the determination of the concentration of radon in dwellings, its diffusion through and its exhalation rate from the soil. A maximum indoor concentration of radon of 8 kBq★m?3 in a bedroom and approximately 35 kBq★m?3 in a cellar room were determined in a house built in 1976. The daily variation between the minimum and the maximum concentration indoors amounts to a factor of ten. In these regions the radon concentration outdoors varies between 20 and 150 Bq★m?3. The exhalation rates of radon from the soil are found to range from 0.002 to 1 Bq★m?2★S?1 The effects of sealing the ground slab with polyurethane and removing the air under the ground slab by suction will be presented.  相似文献   

17.
A study was made of radon-safe buildings in 300 Finnish low-rise residential buildings using data obtained from a questionnaire study. The study also aims at finding the main defects in design and implementation and how the guidance given on radon-safe buildings in slab-on-grade houses has been followed. According to the guidelines, the prevention of the flow of radon-bearing air from the soil into the house is recommended to be carried out through installation of aluminised bitumen felt and use of elastic sealants. Second, as a precaution perforated piping should be installed in the subsoil of the floor slab. The median indoor radon concentration in the houses was 155 Bq/m3. This is 32% lower than the median of the estimated reference values. The action level of 200 Bq/m3 was still exceeded in 40% of the houses. In most houses with slab-on-grade the prevention was based only on the installation of a sub-slab depressurisation system. Sealing was performed in a low number of houses. In 80% of houses with a sub-slab piping connected to an operating fan, radon concentration was below the action level of 200 Bq/m3. In houses with piping but no fan, the corresponding fraction was only 45%. Sub-slab piping without a fan had no remarkable effect on radon concentration. In houses with crawl-space and edge-thickened slabs, radon concentrations were low. The choice of foundation system thus significantly affects the indoor radon concentration. The importance of complete and careful sealing work should be stressed in advice and guides concerning radon prevention.  相似文献   

18.
本文对上海市20户毛坯房(23个自然间)和95户精装房(133个自然间)进行了甲醛、氨、苯、TVOC和氡浓度测定,结果显示毛坯房5项指标均未出现超标,精装房室内空气污染较为严重,除氨和氡外,甲醛、苯和TVOC均出现超标,超标率分别为33.4%、2.6%和53.2%。通过对TVOC的组分浓度占比分析,乙酸丁酯、二甲苯和乙苯的浓度之和占约23%,未识别物质平均浓度占比超过8种标准物质成分总和,达到了74.49%。  相似文献   

19.
The effect of filtration and ventilation on reduction of submicrometer particle concentration indoors was investigated in an office building. The air-handling system consisting of dry media filters and an air-conditioning unit, reduced particle concentration levels by 34%. The characteristics of indoor airborne particles were dominated by, and followed the pattern of, outdoor air, with vehicle combustion aerosols as the main pollutant. The ratio indoor/outdoor particle concentration varied between 14 and 26% for different sub-zones. The presence of significant source of particles indoors was not observed. A simple mathematical model predicting evolution of particles indoors is presented. The model, based on a particle number balance equation, was validated with experimental data and showed very good agreement between predicted and measured parameters.  相似文献   

20.
Y. C. Chen  W. C. Ho  Y. H. Yu 《Indoor air》2017,27(4):746-752
Incense burning is a popular cultural and religious practice, but whether exposure to incense smoke has effects on lung function is unclear. We investigated association between lung function and incense burning exposure and other household exposures in adolescents who participated in a mass asthma‐screening program. Information on asthmatic status and associated factors was obtained from parent‐completed questionnaires and student‐completed video questionnaires. Approximately 10% of students received lung function examinations. Valid lung function data of 5010 students aged 14‐16 years in northern Taiwan were analyzed. Forced vital capacity (FVC) and forced expiratory flow in 1 second (FEV1) were compared by incense burning status and other types of exposures for adolescents. Overall, 70.6% of students were exposed to incense smoke at home. The mean FVC and FEV1 measures were lower among adolescents with daily exposure to incense burning than those without such exposure (P<.05). Sharing bedroom was also associated with decreased FVC and FEV1. After controlling for confounding factors, multivariable linear regression analysis with generalized estimation equation showed that FVC was negatively associated with daily exposure to incense burning, sharing a bedroom, and living in a house adjacent to a traffic road. Such associations were also observed in FEV1. Daily exposure to incense burning is associated with impaired adolescent lung function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号