首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high‐energy conversion efficiency of 8.2% at 100 mW cm?2 is reported, one of the highest values for N719‐based, solid‐state, dye‐sensitized solar cells (ssDSSCs). The solar cells are based on hierarchical double‐shell nanostructures consisting of inner SnO2 hollow spheres (SHS) surrounded by outer TiO2 nanosheets (TNSs). Deposition of the TNS on the SHS outer surface is performed via solvothermal reactions in order to generate a double‐shell SHS@TNS nanostructure that provides a large surface area and suppresses recombination of photogenerated electrons. An organized mesoporous (OM)‐TiO2 film with high porosity, large pores, and good interconnectivity is also prepared via a sol‐gel process using a poly(vinyl chloride)‐g‐poly(oxyethylene methacrylate) (PVC‐g‐POEM) graft copolymer template. This film is utilized as a matrix to disperse the double‐shell nanostructures. Such nanostructures provide good pore‐filling for solid polymer electrolytes, faster electron transfer, and enhanced light scattering, as confirmed by reflectance spectroscopy, incident photon‐to‐electron conversion efficiency (IPCE), and intensity‐modulated photocurrent spectroscopy (IMPS)/intensity‐modulated photovoltage spectroscopy (IMVS).  相似文献   

2.
Submicrometer‐sized (830 ± 40 nm) mesoporous TiO2 beads are used to form a scattering layer on top of a transparent, 6‐µm‐thick, nanocrystalline TiO2 film. According to the Mie theory, the large beads scatter light in the region of 600–800 nm. In addition, the mesoporous structure offers a high surface area, 89.1 m2 g?1, which allows high dye loading. The dual functions of light scattering and electrode participation make the mesoporous TiO2 beads superior candidates for the scattering layer in dye‐sensitized solar cells. A high efficiency of 8.84% was achieved with the mesoporous beads as a scattering layer, compared with an efficiency of 7.87% for the electrode with the scattering layer of 400‐nm TiO2 of similar thickness.  相似文献   

3.
High efficiency dye‐sensitized solar cells (DSSCs) are fabricated with a heterostructured photoanode that consists of a 500‐nm‐thick organized mesoporous TiO2 (om‐TiO2) interfacial layer (IF layer), a 7 or 10‐μm thick nanocrystalline TiO2 layer (NC layer), and a 2‐μm‐thick mesoporous Bragg stack (meso‐BS layer) as the bottom, middle and top layers, respectively. An om‐TiO2 layer with a high porosity, transmittance, and interconnectivity is prepared via a sol‐gel process, in which a poly(vinyl chloride)‐g‐poly(oxyethylene methacrylate) (PVC‐g‐POEM) graft copolymer is used as a structure‐directing agent. The meso‐BS layer with large pores is prepared via alternating deposition of om‐TiO2 and colloidal SiO2 (col‐SiO2) layers. Structure and optical properties (refractive index) of the om‐TiO2 and meso‐BS layers are studied and the morphology of the heterostructured photoanode is characterized. DSSCs fabricated with the heterostructured IF/NC/BS photoanode and combined with a polymerized ionic liquid (PIL) exhibit an energy conversion efficiencies of 6.6% at 100 mW/cm2, one of the highest reported for solid‐state DSSCs and much larger than cells prepared with only a IF/NC layer (6.0%) or a NC layer (4.5%). Improvements in energy conversion efficiency are attributed to the combination of improved light harvesting, decreased resistance at the electrode/electrolyte interface, and excellent electrolyte infiltration.  相似文献   

4.
High‐efficiency all‐solid‐state dye‐sensitized nanocrystalline solar cells have been fabricated using a poly(ethylene oxide)/poly(vinylidene fluoride) (PEO/PVDF)/TiO2‐nanoparticle polymer redox electrolyte, which yields an overall energy‐conversion efficiency of about 4.8 % under irradiation by white light (65.2 mW cm–2). The introduction of PVDF (which contains the highly electronegative element fluorine) and TiO2 nanoparticles into the PEO electrolyte increases the ionic conductivity (by about two orders of magnitude) and effectively reduces the recombination rate at the interface of the TiO2 and the solid‐state electrolyte, thus enhancing the performance of the solar cell.  相似文献   

5.
Hybrid dye‐sensitized solar cells are typically composed of mesoporous titania (TiO2), light‐harvesting dyes, and organic molecular hole‐transporters. Correctly matching the electronic properties of the materials is critical to ensure efficient device operation. In this study, TiO2 is synthesized in a well‐defined morphological confinement that arises from the self‐assembly of a diblock copolymer—poly(isoprene‐b‐ethylene oxide) (PI‐b‐PEO). The crystallization environment, tuned by the inorganic (TiO2 mass) to organic (polymer) ratio, is shown to be a decisive factor in determining the distribution of sub‐bandgap electronic states and the associated electronic function in solid‐state dye‐sensitized solar cells. Interestingly, the tuning of the sub‐bandgap states does not appear to strongly influence the charge transport and recombination in the devices. However, increasing the depth and breadth of the density of sub‐bandgap states correlates well with an increase in photocurrent generation, suggesting that a high density of these sub‐bandgap states is critical for efficient photo‐induced electron transfer and charge separation.  相似文献   

6.
An iodine‐free solid‐state dye‐sensitized solar cell (ssDSSC) is reported here, with 6.8% energy conversion efficiency—one of the highest yet reported for N719 dye—as a result of enhanced light harvesting from the increased transmittance of an organized mesoporous TiO2 interfacial layer and the good hole conductivity of the solid‐state‐polymerized material. The organized mesoporous TiO2 (OM‐TiO2) interfacial layer is prepared on large‐area substrates by a sol‐gel process, and is confirmed by scanning electron microscopy (SEM) and grazing incidence small‐angle X‐ray scattering (GISAXS). A 550‐nm‐thick OM‐TiO2 film coated on fluorine‐doped tin oxide (FTO) glass is highly transparent, resulting in transmittance increases of 8 and 4% compared to those of the bare FTO and conventional compact TiO2 film on FTO, respectively. The high cell performance is achieved through careful control of the electrode/hole transport material (HTM) and nanocrystalline TiO2/conductive glass interfaces, which affect the interfacial resistance of the cell. Furthermore, the transparent OM‐TiO2 film, with its high porosity and good connectivity, exhibits improved cell performance due to increased transmittance in the visible light region, decreased interfacial resistance ( Ω ), and enhanced electron lifetime ( τ ). The cell performance also depends on the conductivity of HTMs, which indicates that both highly conductive HTM and the transparent OM‐TiO2 film interface are crucial for obtaining high‐energy conversion efficiencies in I2‐free ssDSSCs.  相似文献   

7.
Dye‐sensitized solar cells (DSSC) are a realistic option for converting light to electrical energy. Hybrid architectures offer a vast materials library for device optimization, including a variety of metal oxides, organic and inorganic sensitizers, molecular, polymeric and electrolytic hole‐transporter materials. In order to further improve the efficiency of solid‐state dye‐sensitized solar cells, recent attention has focused on using light absorbing polymers such as poly(3‐hexylthiophene) (P3HT), to replace the more commonly used “transparent” 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenyl‐amine)9,9′spiro‐bifluorene (spiro‐OMeTAD), in order to enhance the light absorption within thin films. As is the case with spiro‐OMeTAD based solid‐state DSSC, the P3HT‐based devices improve significantly with the addition of lithium bis(trifluoromethylsulfonyl)imide salts (Li‐TFSI), although the precise role of these additives has not yet been clarified in solid‐state DSCs. Here, we present a thorough study on the effect of Li‐TFSI in P3HT based solid‐state DSSC incorporating an indolene‐based organic sensitizer termed D102. Employing ultrafast transient absorption and cw‐emission spectroscopy together with electronic measurements, we demonstrate a fine tuning of the energetic landscape of the active cell components by the local Coulomb field induced by the ions. This increases the charge transfer nature of the excited state on the dye, significantly accelerating electron injection into the TiO2. We demonstrate that this ionic influence on the excited state energy is the primary reason for enhanced charge generation with the addition of ionic additives. The deepening of the relative position of the TiO2 conduction band, which has previously been thought to be the cause for enhanced charge generation in dye sensitized solar cells with the addition of lithium salts, appears to be of minor importance in this system.  相似文献   

8.
Solid‐state dye‐sensitized solar cells rely on effective infiltration of a solid‐state hole‐transporting material into the pores of a nanoporous TiO2 network to allow for dye regeneration and hole extraction. Using microsecond transient absorption spectroscopy and femtosecond photoluminescence upconversion spectroscopy, the hole‐transfer yield from the dye to the hole‐transporting material 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9'‐spirobifluorene (spiro‐OMeTAD) is shown to rise rapidly with higher pore‐filling fractions as the dye‐coated pore surface is increasingly covered with hole‐transporting material. Once a pore‐filling fraction of ≈30% is reached, further increases do not significantly change the hole‐transfer yield. Using simple models of infiltration of spiro‐OMeTAD into the TiO2 porous network, it is shown that this pore‐filling fraction is less than the amount required to cover the dye surface with at least a single layer of hole‐transporting material, suggesting that charge diffusion through the dye monolayer network precedes transfer to the hole‐transporting material. Comparison of these results with device parameters shows that improvements of the power‐conversion efficiency beyond ≈30% pore filling are not caused by a higher hole‐transfer yield, but by a higher charge‐collection efficiency, which is found to occur in steps. The observed sharp onsets in photocurrent and power‐conversion efficiencies with increasing pore‐filling fraction correlate well with percolation theory, predicting the points of cohesive pathway formation in successive spiro‐OMeTAD layers adhered to the pore walls. From percolation theory it is predicted that, for standard mesoporous TiO2 with 20 nm pore size, the photocurrent should show no further improvement beyond an ≈83% pore‐filling fraction.  相似文献   

9.
Here, the fabrication of quasi‐solid‐state TiO2/dye/poly(3‐hexylthiophene) (P3HT) solar cells is reported, in which the dyes with oleophilic thienyl groups were employed and ionic liquid (IL), 1‐ethyl‐3‐methylimidazolium (EMIm) containing lithium bis(trifluromethanesulfone)amide (Li‐TFSI) and 4‐tert‐butylpyridine (t‐BP) are assembled with dyed TiO2 surfaces. One of the devices gave a high conversion efficiency of up to 2.70% under 1 sun illumination. The excellent performance is ascribed to successful molecular self‐organization at interface of the dye molecules and P3HT, and to the efficient charge separation and diffusion acquired by introduction of the IL coupled with Li‐TFSI and t‐BP.  相似文献   

10.
Organic/inorganic hybrid templates, i.e., aluminium oxide (Al2O3) nanoparticles grafted with poly(oxyethylene) methacrylate, Al2O3‐POEM, are synthesized via surface‐initiated atom transfer radical polymerization (ATRP), as confirmed by Fourier transform‐infrared spectroscopy (FT‐IR) and thermogravimetric analysis (TGA). Upon combining the Al2O3‐POEM with titanium(IV) isopropoxide (TTIP), hydrophilic TTIP is selectively confined in the hydrophilic POEM chains through hydrogen bonding interactions. Following the calcination at 450 °C and the selective etching of Al2O3 with NaOH, the OM‐TiO2 films with high surface areas, good interconnectivity, and anatase phase are obtained. The solid‐state dye‐sensitized solar cells (ssDSSCs) fabricated with OM‐TiO2 photoelectrodes and a polymerized ionic liquid (PIL) show a high energy conversion efficiency of 7.3% at 100 mW cm?2, which is one of the highest values for ssDSSCs. The high cell performance is due to the well‐organized structure, resulting in improved dye loading, excellent pore filling of electrolyte, enhanced light harvesting, and reduced charge recombination.  相似文献   

11.
A novel heteroleptic RuII complex (BTC‐2) employing 5,5′‐(2,2′‐bipyridine‐4,4′‐diyl)‐bis(thiophene‐2‐carboxylic acid) (BTC) as the anchoring group and 4,4′‐ dinonyl‐2,2′‐bipiridyl and two thiocyanates as ligands is prepared. The photovoltaic performance and device stability achieved with this sensitizer are compared to those of the Z‐907 dye, which lacks the thiophene moieties. For thin mesoporous TiO2 films, the devices with BTC‐2 achieve higher power conversion efficiencies than those of Z‐907 but with a double‐layer thicker film the device performance is similar. Using a volatile electrolyte and a double layer 7 + 5 μm mesoporous TiO2 film, BTC‐2 achieves a solar‐to‐electricity conversion efficiency of 9.1% under standard global AM 1.5 sunlight. Using this sensitizer in combination with a low volatile electrolyte, a photovoltaic efficiency of 8.3% is obtained under standard global AM 1.5 sunlight. These devices show excellent stability when subjected to light soaking at 60 °C for 1000 h. Electrochemical impedance spectroscopy and transient photovoltage decay measurements are performed to help understand the changes in the photovoltaic parameters during the aging process. In solid state dye‐sensitized solar cells (DSSCs) using an organic hole‐transporting material (spiro‐MeOTAD, 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene), the BTC‐2 sensitizer exhibits an overall power conversion efficiency of 3.6% under AM 1.5 solar (100 mW cm?2) irradiation.  相似文献   

12.
An investigation of the function of an indolene‐based organic dye, termed D149, incorporated in to solid‐state dye‐sensitized solar cells using 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxypheny‐amine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) as the hole transport material is reported. Solar cell performance characteristics are unprecedented under low light levels, with the solar cells delivering up to 70% incident photon‐to‐current efficiency (IPCE) and over 6% power conversion efficiency, as measured under simulated air mass (AM) 1.5 sun light at 1 and 10 mW cm?2. However, a considerable nonlinearity in the photocurrent as intensities approach “full sun” conditions is observed and the devices deliver up to 4.2% power conversion efficiency under simulated sun light of 100 mW cm?2. The influence of dye‐loading upon solar cell operation is investigated and the thin films are probed via photoinduced absorption (PIA) spectroscopy, time‐correlated single‐photon counting (TCSPC), and photoluminescence quantum efficiency (PLQE) measurements in order to deduce the cause for the non ideal solar cell performance. The data suggest that electron transfer from the photoexcited sensitizer into the TiO2 is only between 10 to 50% efficient and that ionization of the photo excited dye via hole transfer directly to spiro‐OMeTAD dominates the charge generation process. A persistent dye bleaching signal is also observed, and assigned to a remarkably high density of electrons “trapped” within the dye phase, equivalent to 1.8 × 1017 cm?3 under full sun illumination. it is believed that this localized space charge build‐up upon the sensitizer is responsible for the non‐linearity of photocurrent with intensity and nonoptimum solar cell performance under full sun conditions.  相似文献   

13.
A preparation technique of TiO2 screen‐printing pastes from commercially‐available powders has been disclosed in order to fabricate the nanocrystalline layers without cracking and peeling‐off over 17 µm thickness for the photoactive electrodes of the dye‐sensitised solar cells. A conversion efficiency of 8·7% was obtained by using a single‐layer of a semi‐transparent‐TiO2 film. A conversion efficiency of 9·2% was obtained by using double‐layers composed of transparent and light‐scattering TiO2 films for a photon‐trapping system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
A unique watermelon‐like structured SiOx–TiO2@C nanocomposite is synthesized by a scalable sol–gel method combined with carbon coating process. Ultrafine TiO2 nanocrystals are uniformly embedded inside SiOx particles, forming SiOx–TiO2 dual‐phase cores, which are coated with outer carbon shells. The incorporation of TiO2 component can effectively enhance the electronic and lithium ionic conductivities inside the SiOx particles, release the structure stress caused by alloying/dealloying of Si component and maximize the capacity utilization by modifying the Si–O bond feature and decreasing the O/Si ratio (x‐value). The synergetic combination of these advantages enables the synthesized SiOx–TiO2@C nanocomposite to have excellent electrochemical performances, including high specific capacity, excellent rate capability, and stable long‐term cycleability. A stable specific capacity of ≈910 mAh g?1 is achieved after 200 cycles at the current density of 0.1 A g?1 and ≈700 mAh g?1 at 1 A g?1 for over 600 cycles. These results suggest a great promise of the proposed particle architecture, which may have potential applications in the improvement of various energy storage materials.  相似文献   

15.
A series of anatase TiO2‐based nanocomposite incorporated with plasma‐modified multi‐walled carbon nanotubes (MWNTs) was prepared by physical blending and shows its capability for efficient electron transport when used as photoanode in dye‐sensitized solar cells (DSSCs). These MWNTs characterized with good dispersal performance were obtained by functionalization technique via in situ plasma treatment and subsequent grafting with maleic anhydride (MA) onto the external walls reported previously. Compared with the conventional DSSCs, the TiO2 film with 1D carbon nanotubes possesses more outstanding ability to transport electrons injected from the excited dye within the device under illumination. As a result, at an optimum addition of 0.3 wt% MWNTs‐MA in TiO2 matrix, the photocurrent–voltage (J–V) characteristics showed a significant increase in the short‐circuit photocurrent (Jsc) of 50%, leading to an increase in overall solar conversion efficiency by a factor of 1.5. Electrochemical impedance spectroscopy analyses reveal that the MWNTs‐MA/TiO2 incur smaller resistances at the photoanode in assembled DSSCs when compared with those in the anatase titania DSSCs. These features suggest that the conducting properties of the MWNTs‐MA within the anodes are crucial for achieving a higher transport rate for photo‐induced electrons in TiO2 layer by exhibiting lower resistance in the porous network and hence retard charge recombination that could result in poor conversion efficiency. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The unique structure of green leaves endows them with an extremely high light‐harvesting efficiency. In this work, green leaves are applied as biotemplates to synthesize morph‐TiO2. The structural features favorable for light harvesting from the macro‐ to the nanoscale are replicated in morph‐TiO2 through a two‐step infiltration process and the N contained in the original leaves is self‐doped into the resulting samples. The absorbance intensities within the visible‐light range of morph‐TiO2 derived from different leaves increase by 103–258% and the band‐gap‐absorption onsets at the edge of the UV and visible‐light range show a red‐shift of 25–100 nm compared to those in TiO2 without the template. The photocatalytic activity of morph‐TiO2 is also improved, as proven by an electron paramagnetic resonance (EPR) study and degradation of rhodamine dye under irradiation with UV and visible light. The present work, as a new strategy, is of far‐reaching significance in learning from nature, driving us to make full use of the most‐abundant resources and structure‐introduced functions endowed by nature, opening up possibilities for extensive study of the physical and chemical properties of morph‐structured oxides and extending their potential for use in applications such as solar cells, photocatalysts, photoelectrical devices, and photoinduced sensors.  相似文献   

17.
A versatile targeted etching strategy is developed for the large‐scale synthesis of urchin‐like mesoporous TiO2 hollow spheres (UMTHS) with tunable particle size. Its key feature is the use of a low‐temperature hydrothermal reaction of surface‐fluorinated, amorphous, hydrous TiO2 solid spheres (AHTSS) under the protection of a polyvinylpyrrolidone (PVP) coating. With the confinement of PVP and water penetration, the highly porous AHTSS are selectively etched and hollowed by fluoride without destroying their spherical morphology. Meanwhile TiO2 hydrates are gradually crystallized and their growth is preferentially along anatase (101) planes, reconstructing an urchin‐like shell consisting of numerous radially arranged single‐crystal anatase nanothorns. Complex hollow structures, such as core–shell and yolk–shell structures, can also be easily synthesized via additional protection of the interior by pre‐filling AHTSS with polyethylene glycol (PEG). The hollowing transformation is elucidated by the synergetic effect of etching, PVP coating, low hydrothermal reaction temperature, and the unique microstructure of AHTSS. The synthesized UMTHS with a large surface area of up to 128.6 m2 g‐1 show excellent light‐harvesting properties and present superior performances in photocatalytic removal of gaseous nitric oxide (NO) and photoelectrochemical solar energy conversion as photoanodes for dye‐sensitized mesoscopic solar cells.  相似文献   

18.
3D inverse opal (3D‐IO) oxides are very appealing nanostructures to be integrated into the photoelectrodes of dye‐sensitized solar cells (DSSCs). Due to their periodic interconnected pore network with a high pore volume fraction, they facilitate electrolyte infiltration and enhance light scattering. Nonetheless, preparing 3D‐IO structures directly on nonflat DSSC electrodes is challenging. Herein, 3D‐IO TiO2 structures are prepared by templating with self‐assembled polymethyl methacrylate spheres on glass substrates, impregnation with a mixed TiO2:SiO2 precursor and calcination. The specific surface increases from 20.9 to 30.7 m2 g?1 after SiO2 removal via etching, which leads to the formation of mesopores. The obtained nanostructures are scraped from the substrate, processed as a paste, and deposited on photoelectrodes containing a mesoporous TiO2 layer. This procedure maintains locally the 3D‐IO order. When sensitized with the novel benzothiadiazole dye YKP‐88, DSSCs containing the modified photoelectrodes exhibit an efficiency of 10.35% versus 9.26% for the same devices with conventional photoelectrodes. Similarly, using the ruthenium dye N719 as sensitizer an efficiency increase from 5.31% to 6.23% is obtained. These improvements originate mainly from an increase in the photocurrent density, which is attributed to an enhanced dye loading obtained with the mesoporous 3D‐IO structures due to SiO2 removal.  相似文献   

19.
Multifaceted porous materials were prepared through careful design of star polymer functionality and properties. Functionalized core crosslinked star (CCS) polymers with a low glass transition temperature (Tg) based on poly(methyl acrylate) were prepared having a multitude of hydroxyl groups at the chain ends. Modification of these chain ends with 9‐anthracene carbonyl chloride introduces the ability to reversibly photocrosslink these systems after the star polymers were self‐assembled by the breath figure technique to create porous, micro‐structured films. The properties of the low Tg CCS polymer allow for the formation of porous films on non‐planar substrates without cracking and photo‐crosslinking allows the creation of stabilized honeycomb films while also permitting a secondary level of patterning on the film, using photo‐lithographic techniques. These multifaceted porous polymer films represent a new generation of well‐defined, 3D microstructures.  相似文献   

20.
A cis‐configured squaraine dye (HSQ1), synthesized by incorporation of a strongly electron‐withdrawing dicyanovinyl group into the central squaric acid moiety, is employed in dye‐sensitized solar cells (DSCs). In solution, HSQ1 displays an intense absorption in the near‐infrared region with a maximum at 686 nm and when the dye is adsorbed on a TiO2 surface, the absorption spectrum broadens in both the blue and the near‐infrared regions, which is favorable for efficient light harvesting over a broad wavelength range. A solar cell sensitized with HSQ1 shows a broader incident photon‐to‐current conversion efficiency (IPCE) spectrum (from 400 to 800 nm) and a higher IPCE in the long‐wavelength region (71% at 700 nm) than a cell sensitized with squaraine dye SQ1. Furthermore, a solar cell co‐sensitized with HSQ1 and N3 dye shows remarkably improved short‐circuit current density and open‐circuit voltage compared to those of a DSC based on N3 alone and fabricated under the same conditions. The energy‐conversion efficiency of the co‐sensitized DSC is 8.14%, which is the highest reported efficiency for a squaraine dye–based co‐sensitized DSC without using Al2O3 layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号