首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
本文提出将正硅酸乙酯(TEOS)的非水sol-gel反应与单体的微滴乳液聚合技术相结合,制备聚丙烯酸酯/二氧化硅纳米复合乳液。首先采用凝胶时间的测定与动态光散射等手段研究TEOS在甲酸催化下的非水sol-gel反应动力学,表明当甲酸/TEOS的摩尔比大于6,有利于形成颗粒状纳米二氧化硅溶胶。以硅烷偶联剂KH-570对非水溶胶原位改性,然后引入丙烯酸酯共聚单体中,研究硅溶胶的存在对单体微滴乳液聚合的影响。结果表明,聚合动力学与单体的微滴乳液聚合基本相似,但二氧化硅的引入改变了单体微滴的均一性和剪切分散的稳定性,导致乳胶粒径逐渐增大,粒径分布变宽。复合乳胶粒是若干无机粒子以微相区被包覆于有机聚合物中的纳米复合结构形态。  相似文献   

2.
通过溶胶-凝胶法在金红石型纳米二氧化钛(TiO2)表面包覆二氧化硅(SiO2)薄膜,对纳米TiO2进行表面改性。通过优化聚乙烯吡咯烷酮(PVP)用量、硅钛比、氨水的用量确定最佳制备条件为:TiO2用量为0.3 g,PVP用量为0.4 g,硅钛比为2∶1,氨水用量为5 m L,获得了粒径小,SiO2包覆层薄,单分散性好的SiO2-TiO2复合纳米粒子。应用FT-IR,XRD,SEM,TEM和UV-vis等对改性前后的粒子进行表征。结果表明:红外光谱图中出现Si-O-Ti键的振动吸收峰,改性前后的纳米TiO2均为金红石型,SEM及TEM显示改性后的粒子团聚现象减弱,其表面形成了约10 nm的SiO2薄膜。经过表面改性,SiO2成功包覆在纳米TiO2表面,复合纳米粒子的光催化活性得到有效抑制,纳米TiO2作为防晒剂的安全性大大提高。...  相似文献   

3.
余嵘  张弛  张佳翔  雷欢  段妍文  许杨 《应用化工》2023,(6):1739-1744
采用硅烷偶联剂(KH550)对微纳米SiO2颗粒进行改性,将改性后的微纳米SiO2颗粒添加到环氧树脂涂层,得到微纳米SiO2/环氧复合涂层。利用傅里叶红外光谱仪(FTIR)、热重分析(TGA)对改性前后的微纳米SiO2颗粒进行表征分析,结果表明,硅烷偶联剂成功接枝在SiO2颗粒表面。考察不同微纳米SiO2配比下复合涂层的硬度、附着力、耐酸耐碱、接触角等性能参数,结果表明,复合涂层中微纳米SiO2颗粒添加量为5%时,涂层的硬度最佳,耐酸碱侵蚀性能最好;接触角最大,有着最佳的疏水性能。通过旋转挂片实验观察复合涂层在模拟地热水中随时间增长的腐蚀形貌,SEM结果表明,不锈钢片附着的微纳米SiO2/环氧复合涂层没有开裂、涨泡、脱落等破损现象,结垢物质基本不附着。利用电化学阻抗谱和极化曲线分析复合涂层的耐蚀阻垢性能,结果表明,附着复合涂层的不锈钢片在模拟地热水中浸泡30 d后,腐蚀电流密度比原片减小了2个数量级,表现出较好的...  相似文献   

4.
利用硅烷偶联剂KH550改性二氧化硅(SiO2),使丙胺基团接枝在SiO2上,得到氨基化二氧化硅(N-SiO2)。分别采用红外光谱(FTIR)、热重分析(TGA)、元素分析(EA)、粒径分析(DLS)、扫描电子显微镜(SEM)和接触角表征了SiO2改性前后的结构和性能。结果表明,硅烷偶联剂KH550成功接枝在SiO2上,改性后表面变得更粗糙,D50粒径由17.69μm增大到38.38μm,水接触角从0°提高到25.84°,改善了其亲水性。  相似文献   

5.
SiO2皮克林粒子在微胶囊中被广泛使用,但多采用单一改性SiO2粒子稳定O/W型乳液。本文采用两种硅烷偶联剂,γ-缩水甘油醚氧丙酯三甲氧基硅烷(KH560)和γ-甲基丙烯酰氧丙基三甲氧基硅烷(KH570)修饰亲水SiO2粒子表面,得到复合改性的SiO2皮克林粒子(KH560-KH570-SiO2)。研究表明,相较于单一改性的KH560-SiO2,KH570-SiO2和复合改性的KH560-KH570-SiO2都具有很好的乳化稳定性,但复合改性的SiO2皮克林粒子具有的环氧基团能够赋予微胶囊功能化。  相似文献   

6.
利用3-氨基丙基三乙氧基硅烷(APTES)对SiO2纳米粒子进行改性,得到改性SiO2纳米粒子,通过FTIR和接触角分析对其进行了表征,并通过静态实验考察了十二烷基硫酸钠(SDS)溶液、SiO2-SDS纳米流体、改性SiO2-SDS纳米流体在有、无氯化镁存在下对CO2泡沫的起泡性、发泡性和稳定性的影响。结果表明,经改性SiO2纳米粒子表面改性的聚甲基丙烯酸甲酯(PMMA)表面在油-水体系中更亲油,在空气-水体系中更亲气;与SDS溶液(质量浓度0.236%,半衰期80 min)相比,SiO2(质量浓度0.06%)-SDS纳米流体、改性SiO2(质量浓度0.05%)-SDS纳米流体的泡沫半衰期均有所延长,分别延长至120 min、140 min;当SDS质量浓度从0.236%增至0.472%时,改性SiO2-SDS纳米流体的泡沫半衰期从140 min延长至270 min;在氯化镁存在下,改性Si...  相似文献   

7.
用二氧化硅(SiO2)对纳米氧化锌(ZnO)防晒剂表面进行改性以降低纳米ZnO的光催化活性,从而减少光催化时产生的活性氧基团对皮肤的损伤和对有机物的降解并且最终制备出SiO2包覆纳米ZnO的ZnO@SiO2复合颗粒。透射电子显微镜(TEM)图像显示ZnO@SiO2复合颗粒呈球状并且具有壳层结构。傅里叶变换红外光谱(FTIR)结果证明SiO2包覆在纳米ZnO表面。光催化性能测试结果证实,SiO2壳层有效降低了纳米ZnO光催化活性。将ZnO@SiO2复合颗粒和有机防晒剂复配制得防晒乳液,并且对乳液进行防晒性能评价。结合紫外屏测试结果和SPF测量结果可以证明,ZnO@SiO2和甲氧基肉桂酸乙基己酯复配表现出良好的协同效果,具有高紫外屏蔽能力的广谱防晒效果。  相似文献   

8.
为了探究 SiO2纳米粒子对 UV固化涂层硬度及耐磨性的影响,通过 St.ber法制备了粒径为 40 nm的 SiO2纳米粒子,并使用硅烷偶联剂 KH570对其表面进行改性,以提高其在 UV固化树脂中的分散性。系统研究了 SiO2纳米粒子的添加状态及硅烷偶联剂添加量对其在 UV固化涂层中分散性的影响。结果表明:使用 SiO2纳米粒子与 UV固化活性稀释剂组成的分散液能够在 UV固化树脂中得到良好的分散,并且随着硅烷偶联剂添加量的增加,其在 UV固化树脂中的分散性逐渐提高。此外添加 SiO2纳米粒子后涂层的双键转化率仍然维持在 70%,光固化速率基本没有变化。随着 SiO2纳米粒子的添加量达到 10%,不同配方的光固化涂层的铅笔硬度都有 1~2个等级的提升,且耐磨性有所提高。  相似文献   

9.
于强  鹿院卫  张晓盼  吴玉庭 《化工学报》2019,70(Z1):217-225
为了得到SiO2纳米粒子含量对SiO2/NaNO3-KNO3/EG复合蓄热材料比热容和热导率的影响,通过机械分散法,采用NaNO3-KNO3和不同质量分数(0.1%,0.5%,1%,2%,3%)的SiO2纳米粒子所形成的熔盐纳米材料作为蓄热材料,膨胀石墨(EG)作为基体材料,制备出纳米SiO2/NaNO3-KNO3/EG复合材料。对复合材料的比热容和热导率进行了测量,同时用扫描电镜对其微观结构特征进行了分析。结果表明,SiO2纳米粒子的质量分数为1%时,复合材料的平均比热容和热导率分别为3.92 J/(g·K)和8.47 W/(m·K),与其他纳米SiO2添加比例相比,其比热容和热导率分别提高了1.37~2.17倍和1.7~3.2倍。这是由于复合材料表面会形成高密度的网状结构,这种具有较大比表面积和高表面能的特殊纳米结构可以提高复合材料的比热容和热导率。  相似文献   

10.
王丽  赵玉喜  王家喜 《工业催化》2014,22(6):428-436
采用共沉淀法制备Fe3O4粒子,用SiO2对Fe3O4纳米粒子进行表面包覆,用改性聚乙烯吡咯烷酮对所得磁性粒子进行表面修饰,制备磁性纳米粒子负载钌催化剂Ru/PVP-DB-171/SiO2/Fe3O4。红外光谱、X射线衍射、扫描电子显微镜及透射电子显微镜分析表明,所得粒子结构是面心尖晶石结构,Fe3O4为核,无定形SiO2为壳,纳米钌吸附在磁性载体表面。该粒子具有高分散性,可用磁分离实现固液分离。以甲苯液相催化加氢反应为模型,评价磁性负载钌催化剂的催化性能,计算出甲苯氢化的活化能为16.6 kJ·mol-1,在433 K和4.0 MPa条件下,反应转换数达30 262 mol·(mol-Ru)-1,Ru催化剂可循环使用8次,添加助剂的种类和数量影响催化剂活性。  相似文献   

11.
常温下一步法制备改性硅溶胶,并通过细乳液聚合制备改性硅溶胶/聚丙烯酸酯复合乳液。考查了温度对聚合速率和单体转化率的影响以及不同乳化剂含量下聚合过程中乳胶粒粒径的变化情况;测试了乳胶膜的吸水率,并用接触角法表征了乳胶膜的表面自由能。  相似文献   

12.
Nanosize polyacrylamide/silica (PAM/SiO2) composites were prepared by water- in-oil (W/O) microemulsion process. In this system, aqueous solution of acrylamide containing disperse 10 nm size silicon dioxide was used as the dispersed phase of the microemulsion while the dispersion medium was sodium bis (2-ethylhexyl) sulfosuccinate (AOT)/toluene solution. The size of the synthesized PAM/SiO2 nanocomposites was 38–76 nm as determined by dynamic light scattering (DLS). The incorporation of nanosize silica filler reduces the particle size of PAM latex. It had also been found that the size of composite particles decreases with increasing filler loading along with better polydispersity. The presence of silica particles in the polymer latex particles and interaction of polymer chains with silica particles in hybrid nanocomposites were characterized by Fourier transform infra red spectrophotometry (FTIR), thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). The TGA results showed improved thermoresistance and high thermal stability behavior of hybrid composites. The DSC measurements revealed that the incorporation of filler favors crystallization, increases the enthalpy of melting and thermal stabilization of the synthesized composite particles. A scanning electron microscope (SEM) was used to study the morphology and topography of the prepared nanocomposites.  相似文献   

13.
A series of polymer/SiO2 organic-inorganic composite microspheres were successfully prepared through miniemulsion polymerization. A TEM study indicated that the composite microspheres had raspberry-like morphology and silica particles were successfully deposited onto the surfaces of organic polymer microspheres. The average particle size and the silica content of composite microspheres could range from 180 nm to 240 nm and 15 ~ 35 wt%, respectively. The influence of reaction conditions such as the amount of emulsifier, the sonification frequency and sonification time, the amount of silica sol, butyl acrylate (BA) on the particle size, silica content and morphology of composite microspheres have been studied.  相似文献   

14.
Acrylate polymer/silica nanocomposite particles were prepared through miniemulsion polymerization by using methyl methacrylate/butyl acrylate mixture containing the well-dispersed nano-sized silica particles coupling treated with 3-(trimethoxysilyl)propyl methacrylate (MPS). The encapsulation efficiency of silica particles was determined through the elution and hydrofluoride acid etching experiments, and the size distribution and the morphology of the composite latex particles were characterized by dynamic light scattering and transmission electron microscopy. The coupling treatment of silica with MPS can improve the encapsulation efficiency of silica and the degree of grafting of polymer onto silica. When 0.10 g MPS/g silica was used to modify silica, the encapsulation efficiency of silica was greater than 95%, and the degree of grafting of acrylate polymer onto silica was about 60%. Although the average size and the size distribution index of the composite latex particles increased as the weight fraction of silica increased, the stable latex containing the ‘guava-like’ composite particles was obtained. The grafting of polymer onto silica particles improved the dispersion of silica particles in the solvents for acrylate polymer and in the polymer matrix.  相似文献   

15.
Raspberry-like P(St-BA)/SiO2 nanoparticle latexes were prepared via miniemulsion polymerization of styrene (St) and butyl acrylate (BA) in the presence of 20 nm glycerol-modified SiO2 sol as a Pickering emulsifier and octaphenyl polyoxyethylene (CA-897) as a nonionic surfactant, using 2,2-azobis (isobutyronitrile) (AIBN) as an initiator. 2-(Methacryloyl) ethyltrimethylammonium chloride (MTC) was introduced to act as an auxiliary monomer to enhance the attraction of SiO2 sol onto latex nanoparticles (NPs) via increasing their electrostatic interaction with negative-charged SiO2 sol. The average particle sizes of the latex particles can be well controlled from 200 to 360 nm by variation of the SiO2 sol content as well as soft monomer BA component. The latex NPs displayed a good colloidal stability with excellent resistance to both strong acidic and basic environment. Furthermore, the nanosized latexes exhibited good film formability. The influence of reaction parameters, e.g., the initial silica amount and soft monomer BA content was systematically investigated on the film performances, such as hardness, abrasive resistance, water absorption, gloss. The results indicated that the increase of SiO2 sol content can contribute to the increase of the film hardness and water absorption ability, while increasing BA component is beneficial to the improvement of the film gloss.  相似文献   

16.
In this research, the thermoresponsive composite latex particles were prepared via W/O miniemulsion polymerization. Fe3O4 nanoparticles were homogeneously dispersed inside the poly(NIPAAm‐co‐MAA) latex particles. In the first step, PAA oligomers were used as stabilizers to produce a stable water‐based Fe3O4 ferrofluid, which could mix well with the water‐soluble monomers. In the second step, the Fe3O4/poly(NIPAAm‐co‐MAA) composite latex particles were synthesized via W/O miniemulsion polymerization. This polymerization proceeded in cyclohexane at room temperature, with Span80 as the emulsifier, NIPAAm as the thermoresponsive monomer, MAA as a comonomer with ? COOH functional groups, and APS/SMBS as the redox initiator system. The distribution of Fe3O4 nanoparticles inside the composite latex particles was expected to be homogeneous. The nucleation and morphology of the composite latex particles were mainly controlled by the concentration of the surfactant, Span80, in cyclohexane. The properties of the composite latex were examined with several instruments such as DSC and TGA. Finally, the superparamagnetic and thermoresponsive characteristics of this functional composite latex were also investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3987–3996, 2006  相似文献   

17.
Poly(butyl acrylate)/poly(methyl methacrylate) (PBA/PMMA) core–shell particles embedded with nanometer‐sized silica particles were prepared by emulsion polymerization of butyl acrylate (BA) in the presence of silica particles preabsorbed with 2,2′‐azobis(2‐amidinopropane)dihydrochloride (AIBA) initiator and subsequent MMA emulsion polymerization in the presence of PBA/silica composite particles. The morphologies of the resulting PBA/silica and PBA/silica/PMMA composite particles were characterized, which showed that AIBA could be absorbed effectively onto silica particles when the pH of the dispersion medium was greater than the isoelectric potential point of silica. The critical amount of AIBA added to have stable dispersion of silica particles increased as the pH of the dispersion medium increased. PBA/silica composite particles prepared by in situ emulsion polymerization using silica preabsorbed with AIBA showed higher silica absorption efficiency than did the PBA/silica composite particles prepared by direct mixing of PBA latex and silica dispersion or by emulsion polymerization in which AIBA was added after the mixing of BA and silica. The PBA/silica composite particles exhibited a raspberrylike morphology, with silica particles “adhered” to the surfaces of the PBA particles, whereas the PBA/silica/PMMA composite latex particles exhibited a sandwich morphology, with silica particles mainly at the interface between the PBA core and the PMMA shell. Subsequently, the PBA/silica/PMMA composite latex obtained had a narrow particle size distribution and good dispersion stability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3425–3432, 2006  相似文献   

18.
In this article, we first carried out the surface modification of SiO2 using silane coupling agent KH570, and then prepared PMMA/SiO2 organic–inorganic hybrid materials by conventional free radical polymerization and RAFT polymerization in miniemulsion, respectively. The kinetics comparisons of these two polymerizations were studied. PMMA/SiO2 hybrid materials were characterized by gel permeation chromatography, differential scanning calorimetry and thermogravimetric analysis. Experimental results indicated that the polymerization behavior of MMA in miniemulsion showed controlled/living radical polymerization characteristics under the control of RAFT agent. Incorporation of RAFT agent and SiO2 nanoparticles improved the thermal properties of polymers, the thermal stability of polymers increased with increasing content of SiO2 nanoparticles. The structures and morphologies of SiO2, modified SiO2, and PMMA/SiO2 hybrid materials were characterized by FT‐IR and TEM. TEM results showed that the addition of modified SiO2 nanoparticles to miniemulsion polymerization system obtained different morphology latex particles. Most of modified SiO2 nanoparticles were wrapped by polymer matrix after polymerization. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

19.
Polyacrylate/silica nanocomposite latexes were prepared by silica sol and facilely modified with a silane coupling agent γ-methacryloxypropyltrimethoxysilane (KH-570) aimed at reinforcing the interaction between silica nanoparticles and latex particles in a convenient way. The effects of silica sol and KH-570 amounts on the performance of latexes and films are discussed. Particle size and morphology tests demonstrated that the silica nanoparticles could form hydrogen bond interactions between latex particles, and thus influence the rheological properties of latexes. Tensile measurements and SEM photographs showed the reinforcing and toughening roles of silica nanoparticles. SEM images also indicated that the addition of silica sol increased the roughness of films, which resulted in the increase of hydrophilic silanol groups on the film surface and the decrease of water resistance of latex films. The latex films retained good adhesion force, flexibility, and impact resistance even when the silica sol content was as much as 25%. TGA data revealed that the incorporation of silica sol enhanced the thermal stability of the films. After introducing KH-570, the particle size increased with the increase of the amount of KH-570. Moreover, the addition of KH-570 improved the water resistance and maintained other properties of the latex films appropriately.  相似文献   

20.
We report a novel waterborne acrylic-silicone modified alkyd nanocomposite latex containing nano-silica prepared by the surfactant-free miniemulsion polymerization. The influences of γ-methacryloxy-propyltrimethoxysilane- (MPS-) modified nano-silica particle contents to the thermal, mechanical and anti-corrosion performance of hybrid latex coatings were studied. The results revealed that the incorporation of nano-silica particles into latex films could directly increase the thermal stability and mechanical properties. Electrochemical corrosion studies revealed that these nanocomposite coatings exhibited superior corrosion resistance performance (inhibition efficiency 99.36% and corrosion rate 1.09 × 10 ?3 mm per year) than that of the control system (without SiO2 NPs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号