首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 182 毫秒
1.
This numerical study reveals the heat transfer performance of hybrid/single nanofluids inside a lid-driven sinusoidal trapezoidal-shaped enclosure. The right and left inclined surfaces of the trapezium have been considered as insulated, whereas the bottom sinusoidal wavy and the flat top surfaces of the enclosure as hot and cold, respectively. The governing partial differential equations of fluid's velocity and temperature have been resolved by applying the finite element method. The implications of Prandtl number (4.2-6.2), Richardson number (0.1-10.0), undulation number (0-3), nanoparticles volume fraction (0%-3%), and nanofluid/base fluid (water, water–copper (Cu), water–Cu–carbon nanotube, water–Cu–copper oxide (CuO), water–Cu–TiO2, and water–Cu–Al2O3) on the velocity and temperature profiles have been studied. Simulated findings have been represented by means of streamlines, isothermal lines, and average Nusselt number of above-mentioned hybrid nanofluids for varying the governing parameters. The comparison of heat transfer rates using hybrid nanofluids and pure water has been also shown. The heat transfer rate is increased about 15% for varying Richardson number from 0.1 to 10.0. Blending of two nanoparticles suspension in base fluid has a higher heat transfer rate—approximately 5% than a mononanoparticle. Moreover, a higher average Nusselt number is obtained by 14.7% using the wavy surface than the flat surface of the enclosure. Thus, this study showed that applying hybrid nanofluid may be beneficial to obtain expected thermal performance.  相似文献   

2.
ABSTRACT

The waviness of tube wall and adding nanoparticles to fluid as two passive enhanced heat-transfer techniques are dully accepted; however, the combined effect of their simultaneous usage has not been dealt with, yet. Therefore in the present study, the convective heat transfer of nanofluid laminar flow inside straight tube and sinusoidal tubes under constant heat flux boundary condition was documented. The nanofluid used in this study was Al2O3/water with volume fractions from 0 to 4%. The effects of Reynolds number, volume fractions of nanoparticles, and the geometry of sinusoidal tubes upon the heat-transfer coefficient were investigated. The results showed that using sinusoidal tubes enhances heat-transfer coefficients. Also, it was observed that increasing Reynolds number leads to higher heat-transfer coefficients in the convergent section. Moreover, it was observed that increasing the sinusoidal wave amplitude augments the convective heat-transfer coefficients; however, the increase in Nusselt number was slight. Furthermore, adding nanoparticles enhances heat transfer especially in large wave amplitude sinusoidal tubes.  相似文献   

3.
This article presents a numerical investigation of unsteady laminar mixed convection heat transfer in a two-dimensional square cavity. The cavity is configured such that one of the vertical walls is cooled and slides either with a constant speed or with a sinusoidal oscillation. A portion of the opposite stationery wall is heated by a constant temperature heat source while, the remaining walls of the cavity are thermally insulated. Different configurations of sliding wall movement and a series of Richardson numbers and Strouhal numbers are tested. The results indicate that the direction and magnitude of the sliding wall velocity affect the heat transfer rate. At low Richardson numbers, the average heat transfer rate for the cavity with an oscillating wall is found to be lower compared to that for the cavity with a constant velocity wall. In addition, at a fixed Richardson number, as the Strouhal number decreases the oscillation frequency of average Nusselt number on the vertical walls decreases; however, the oscillation amplitude of average Nusselt number increases.  相似文献   

4.
In this paper, combined convective heat transfer and nanofluids flow characteristics in a vertical rectangular duct are numerically investigated. This investigation covers Rayleigh numbers in the range of 2 × 106Ra ≤ 2 × 107 and Reynolds numbers in the range of 200 ≤ Re ≤ 1000. Pure water and five different types of nanofluids such as Ag, Au, CuO, diamond, and SiO2 with a volume fraction range of 0.5% ≤ φ ≤ 3% are used. The three‐dimensional steady, laminar flow, and heat transfer governing equations are solved using finite volume method (FVM). The effects of Rayleigh number, Reynolds number, nanofluids type, nanoparticle volume fraction of nano‐ fluids, and effect of radiation on the thermal and flow fields are examined. It is found that the heat transfer is enhanced using nanofluids by 47% when compared with water. The Nusselt number increases as the Reynolds number and Rayleigh number increase and aspect ratio decreases. A SiO2 nanofluid has the highest Nusselt number and highest wall shear stress while the Au nanofluid has the lowest Nusselt number and lowest wall shear stress. The results also revealed that the wall shear stress increases as Reynolds number increases, aspect ratio decreases, and nanoparticle volume fraction increases. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20354  相似文献   

5.
The mixed convection fluid flow in a square cavity filled with AL2O3‐water non‐Newtonian nanofluid is numerically analyzed. The left and right vertical boundaries of the enclosure have been kept in the constant temperature. Remaining walls of the cavity have been considered to have adiabatic boundary condition. Two different cases have been considered. In the first case, left and right side walls have been moved vertically with constant speed Vb in opposite directions. In the second case, the directions of their motions have been reversed. The transport equations, written in terms of the primitive variables for the non‐Newtonian nanofluid, have been solved numerically using the finite volume method. The shear stresses were calculated using the Ostwald‐de Waele model for the shear‐thinning nanofluid. The model introduced by Patel et al was used to obtain the thermal conductivity of the nanofluid. The variation of the fluid flow with respect to the Richardson number and volume fraction of the nanoparticles was investigated through a parametric study. Even though increasing the volume fraction of nanoparticles leads to heat transfer enhancement, for the second case of this study, for Ri = 1, the average Nusselt number initially drops sharply by increasing the volume fraction of nanoparticles, then remains constant.  相似文献   

6.
In the present study, the effects of Cu and CuO nanoparticles' presence on mixed convection heat transfer in a lid‐driven cavity with a corrugated wall are investigated using the lattice Boltzmann method. The boundary fitting method with second‐order accuracy at both velocity and temperature fields is used to simulate the curved boundaries in the LBM. The problem is investigated for different Richardson numbers (0.1–10), volume fractions of nanoparticles (0–0.05), curve amplitudes (0.05–0.25), and phase shifts of corrugated wall (0–270) when the Reynolds number is equal to 25. The volume fraction of added nanoparticles to the water‐based fluid is less than 0.05 to make dilute suspensions. Results show that adding nanoparticles enhances the rate of heat transfer. It is found that nanoparticles have significant effects on both fluid flow and heat transfer of the mixed convection, especially for low Richardson numbers. A comparison between Cu and CuO nanoparticles shows the Cu nanoparticles have a better effect on heat transfer enhancement for all tested conditions. The results also represent the effective role of a corrugated wall on the rate of nanofluid heat transfer. It is observed that increasing the wavy wall's amplitude leads to a decrease of the average Nusselt numberfor a high Richardson number. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21024  相似文献   

7.
This paper examines forced convection heat transfer and entropy generation of a nanofluid laminar flow through a horizontal channel with wavy walls in the presence of magnetic field, numerically. The Newtonian nanofluid is composed of water as base fluid and Al2O3 as nanoparticle which is exposed to a transverse magnetic field with uniform strength. The inlet nanofluid with higher temperature enters the cool duct and heat is exchanged along the walls of a wavy channel. The effects of the dominant parameters including Reynolds number, solid volume fraction, Hartmann number, and different states of amplitude sine waves are studied on the local and average Nusselt number, skin friction, and total entropy generation. Computations show excellent agreement of the present study with the previous literature. The computations indicate that with the increasing strength of a magnetic field, Nusselt number, skin friction, and total entropy generation are increased. It is found that increasing the solid volume fraction of nanoparticles will increase the Nusselt number and total entropy generation, but its effect on the skin friction is negligible. Also, results imply that increasing amplitude sine waves of the geometry has incremental effect on both Nusselt number and skin friction, but its effect on the total entropy generation is not so tangible.  相似文献   

8.
Mixed convection heat transfer in a cubical cavity with an isothermally heated blockage inside filled with a hybrid nanofluid (HBNF) is numerically studied. The natural convection is created by the temperature difference between the hot block and the cold lateral walls, while the forced convection is generated by moving the upper wall. The influence of some variables, like the aspect ratio (0.1 ≤ r ≤ 0.5), Richardson number (0 ≤ Ri≤ 20), Reynolds number (50 ≤ Re ≤ 200), volume concentration of nanoparticles (0 ≤ ϕ ≤ 0.06), and the concentration ratio (2:8, 5:5, and 8:2) on the flow field and heat transfer is analyzed. A comparison between hybrid and mono nanofluids (NFs) is realized to investigate the energy transport enhancement. Results show that the increase of each parameter causes an increase of average Nusselt number Nuavg and improves the heat transfer; besides the use of HBNF gives better Nuavg values. Three correlations of the effect of r, ϕ, Ri, and Re on Nuavg are determined for both hybrid and mono NFs.  相似文献   

9.
In the current work, numerical simulations are achieved to study the properties and the characteristics of fluid flow and heat transfer of (Cu–water) nanofluid under the magnetohydrodynamic effects in a horizontal rectangular canal with an open trapezoidal enclosure and an elliptical obstacle. The cavity lower wall is grooved and represents the heat source while the obstacle represents a stationary cold wall. On the other hand, the rest of the walls are considered adiabatic. The governing equations for this investigation are formulated, nondimensionalized, and then solved by Galerkin finite element approach. The numerical findings were examined across a wide range of Richardson number (0.1 ≤ Ri ≤ 10), Reynolds number (1 ≤ Re ≤ 125), Hartmann number (0 ≤ Ha ≤ 100), and volume fraction of nanofluid (0 ≤ φ ≤ 0.05). The current study's findings demonstrate that the flow strength increases inversely as the Reynolds number rises, which pushes the isotherms down to the lower part of the trapezoidal cavity. The Nuavg rises as the Ri rise, the maximum Nuavg = 10.345 at Ri = 10, Re = 50, ϕ = 0.05, and Ha = 0; however, it reduces with increasing Hartmann number. Also, it increase by increasing ϕ, at Ri = 10, the Nuavg increased by 8.44% when the volume fraction of nanofluid increased from (ϕ = 0–0.05).  相似文献   

10.
The natural convection heat transfer in a cavity filled with three layers of solid, porous medium, and free fluid is addressed. The porous medium and free fluid layers are filled with a nanofluid. The porous layer is modeled using the local thermal nonequilibrium (LTNE) model, considering the temperature difference between the solid porous matrix and the nanofluid phases. The nanofluid is modeled using the Buongiorno’s model incorporating the thermophoresis and Brownian motion effects. The governing equations are transformed into a set of nondimensional partial differential equations, and then solved using finite element method in a nonuniform grid. The effects of various nondimensional parameters are discussed. The results showed that the Brownian motion and thermophoresis effects result in significant concentration gradients of nanoparticles in the porous and free fluid layers. The increase in Rayleigh (Ra), Darcy (Da), the thermal conductivity ratios for the solid wall and solid porous matrix, i.e., Kr and Rk, enhanced the average Nusselt number. The increase in the convection interaction heat transfer parameter between the solid porous matrix and the nanofluid in the pores (H) increases the average Nusselt number in the solid porous matrix but decreases the average Nusselt number in the nanofluid phase of the porous layer.  相似文献   

11.
Experimental and numerical investigations are presented to illustrate the nanofluid flow and heat transfer characteristics over microscale forward-facing step (MFFS). The duct inlet and the step height were 400 μm and 600 μm respectively. All the walls are considered adiabatic except the downstream wall was exposed to a uniform heat flux boundary condition. The distilled water was utilized as a base fluid with two types of nanoparticles Al2O3 and SiO2 suspended in the base fluid. The nanoparticle volume fraction range was from 0 to 0.01 with an average nanoparticle diameter of 30 nm. The experiments were conducted at a Reynolds number range from 280 to 480. The experimental and numerical results revealed that the water–SiO2 nanofluid has the highest Nusselt number, and the Nusselt number increases with the increase of volume fraction. The average friction factor of water–Al2O3 was less than of water–SiO2 mixture and pure water. The experimental results showed 30.6% enhancement in the average Nusselt number using water–SiO2 nanofluid at 1% volume fraction. The numerical results were in a good agreement with the experimental results.  相似文献   

12.
Heat transfer enhancement in a horizontal annulus using the variable viscosity property of an Al2O3–water nanofluid is investigated. Two different viscosity models are used to evaluate heat transfer enhancement in the annulus. The base case uses the Pak and Cho model and the Brinkman model for viscosity which take into account the dependence of this property on temperature and nanoparticle volume fraction. The inner surface of the annulus is heated uniformly by a constant heat flux qw and the outer boundary is kept at a constant temperature Tc. The nanofluid generates heat internally. The governing equations are solved numerically subject to appropriate boundary conditions by a penalty finite‐element method. It is observed that for a fixed Prandtl number Pr = 6.2, Rayleigh number Ra = 104 and solid volume fraction ? = 10%, the average Nusselt number is enhanced by diminishing the heat generation parameter, mean diameter of nanoparticles, and diameter of the inner circle. The mean temperature for the fluids (nanofluid and base fluid) corresponding to the above mentioned parameters is plotted as well. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21016  相似文献   

13.
In this article, a parametric study is conducted to evaluate heat transfer enhancement in a ribbed channel containing Al2O3–Water nanofluid with wavy wall. The physical domain is under the influence of the magnetic field that creates a negative force against the working fluid to move. Nanofluid with higher temperature enters the cool ribbed duct and heat is exchanged along the walls of channel. The effects of the dominant parameters including number of the blocks, solid volume fractions of nanofluid, Hartmann number, Reynolds number, and different states of amplitude sine waves are numerically tested on the local and average Nusselt number, skin friction, and total entropy generation. Excellent agreement between present study and previous literature is observed. It is found that, an augmentation in magnetic field will result in higher values of both local and average Nusselt number accompanying with bigger values of skin friction and entropy generation. Computations illustrate that, increasing the solid volume fraction of the Al2O3 nanoparticles will raise the Nusselt number and total entropy generation rate but its effect on the skin friction is negligible. Also, numerical results imply that increasing amplitude sine waves of the geometry has incremental effect on the Nusselt number and skin friction but its effect on the total entropy generation rate is not so clear. Moreover, by adding number of the used blocks in the presence of magnetic field, the local Nusselt number experiences more jumps but it does not increase the average Nusselt number, necessarily. In addition, using more blocks increases skin friction but it has a reverse effect on the total entropy generation rate.  相似文献   

14.
Predictions are reported for laminar mixed convection using various types of nanofluids over a horizontal backward‐facing step in a duct, in which the upstream wall and the step are considered adiabatic surfaces, while the downstream wall from the step is heated to a uniform temperature that is higher than the inlet fluid temperature. The straight wall that forms the other side of the duct is maintained at constant temperature equivalent to the inlet fluid temperature. Eight different types of nanoparticles, Au, Ag, Al2O3, Cu, CuO, diamond, SiO2, and TiO2, with 5% volume fraction are used. The conservation equations along with the boundary conditions are solved using the finite volume method. Results presented in this paper are for a step height of 4.9 mm and an expansion ratio of 1.942, while the total length in the downstream of the step is 0.5 m. The Reynolds number is in the range of 75 ≤ Re ≤ 225. The downstream wall was fixed at a uniform wall temperature in the range of 0 ≤ ΔT ≤ 30 °C which is higher than the inlet flow temperature. Results reveal that there is a primary recirculation region for all nanofluids behind the step. It is noticed that nanofluids without secondary recirculation region have a higher Nusselt number and it increases with Prandtl number decrement. On the other hand, nanofluids with secondary recirculation regions are found to have a lower Nusselt number. Diamond nanofluid has the highest Nusselt number in the primary recirculation region, while SiO2 nanofluid has the highest Nusselt number downstream of the primary recirculation region. The skin friction coefficient increases as the temperature difference increases and the Reynolds number decreases. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20344  相似文献   

15.
The increasing demand of nanofluids in industrial applications has led to increased attention from many researchers. In this paper, heat transfer enhancement using TiO2 and SiO2 nanopowders suspended in pure water is presented. The test setup includes a car radiator, and the effects on heat transfer enhancement under the operating conditions are analyzed under laminar flow conditions. The volume flow rate, inlet temperature and nanofluid volume concentration are in the range of 2–8 LPM, 60–80 °C and 1–2% respectively. The results showed that the Nusselt number increased with volume flow rate and slightly increased with inlet temperature and nanofluid volume concentration. The regression equation for input (volume flow rate, inlet temperature and nanofluid volume concentration) and response (Nusselt number) was found. The results of the analysis indicated that significant input parameters to enhance heat transfer with car radiator. These experimental results were found to be in good agreement with other researchers' data, with a deviation of only approximately 4%.  相似文献   

16.
Mixed convection of a nanofluid consisting of water and SiO2 in an inclined enclosure cavity has been studied numerically. The left and right walls are maintained at different constant temperatures while upper and bottom insulated walls are moving lids. Two-phase mixture model has been used to investigate the thermal behaviors of the nanofluid for various inclination angles of enclosure ranging from θ = − 60° to θ = 60°, volume fraction from 0% to 8%, Richardson numbers varying from 0.01 to 100 and constant Grashof number 104. The governing equations are solved numerically using the finite-volume approach. Results are presented in the form of streamlines, isotherms, distribution of nanoparticles and average Nusselt number. In addition, effects of solid volume fraction of nanofluids on the hydrodynamic and thermal characteristics have been investigated. The results reveal that addition of nanoparticles enhances heat transfer in the cavity remarkably and causes significant changes in the flow pattern. Besides, effect of inclination angle is more pronounced at higher Richardson numbers.  相似文献   

17.
In this article, forced convection heat transfer with laminar and developed flow for water-Al2O3 nanofluid inside a circular tube under constant heat flux from the wall was numerically investigated using computational fluid dynamics method. Both single and two-phase models are accomplished for either constant or temperature dependent properties. For this study nanofluids with size particles equal to 100 nm and particle concentrations of 1 and 4 wt% were used. It is observed that the nanoparticles when dispersed in base fluid such as water enhance the convective heat transfer coefficient. The Nusselt number and heat transfer coefficient of nanofluids were obtained for different nanoparticle concentrations and various Reynolds numbers. Heat transfer was enhanced by increasing the concentration of nanoparticles in nanofluid and Reynolds number. Also, a correlation based on the dimensionless numbers was obtained for the prediction the Nusselt number. The modeling results showed that the predicted values were in very good agreement with reference experimental data.  相似文献   

18.
This work presents a numerical investigation of turbulent forced convection of a nanofluid over a heated cavity in a horizontal duct. Heat transfers in separated flows are frequently encountered in engineering applications, such as: heat exchangers, axial and centrifugal compressor blades, gas turbines blades, and microelectronic circuit boards. Thus, it is very essential to understand the mechanisms of heat transfer in such regions in order to enhance heat transfer. Different volume fractions of nanoparticles are presented in the base fluid and different types of nanoparticles are used. The objective of this study is to check the effect of nanofluid on heat transfer in such a configuration. Numerical simulations are performed for pure water and four nanofluids (Cu, CuO, Ag, and Al2O3). The results are analyzed through the thermal and dynamical fields with a particular interest to the skin friction coefficient and Nusselt number evolutions. The average Nusselt number increases with the volume fraction of nanoparticles for the whole tested range of Reynolds number. A correlation of average Nusselt number versus Reynolds number and volume fraction of each type of nanoparticles over the cavity wall is proposed in this paper.  相似文献   

19.
In this study, forced convection flows of nanofluids consisting of water with TiO2 and Al2O3 nanoparticles in a horizontal tube with constant wall temperature are investigated numerically. The horizontal test section is modeled and solved using a CFD program. Palm et al.'s correlations are used to determine the nanofluid properties. A single-phase model having two-dimensional equations is employed with either constant or temperature dependent properties to study the hydrodynamics and thermal behaviors of the nanofluid flow. The numerical investigation is performed for a constant particle size of Al2O3 as a case study after the validation of its model by means of the experimental data of Duangthongsuk and Wongwises with TiO2 nanoparticles. The velocity and temperature vectors are presented in the entrance and fully developed region. The variations of the fluid temperature, local heat transfer coefficient and pressure drop along tube length are shown in the paper. Effects of nanoparticles concentration and Reynolds number on the wall shear stress, Nusselt number, heat transfer coefficient and pressure drop are presented. Numerical results show the heat transfer enhancement due to presence of the nanoparticles in the fluid in accordance with the results of the experimental study used for the validation process of the numerical model.  相似文献   

20.
TiO2/water nanofluid is used together with a ribbed tube for heat transfer augmentation. This paper presents an experimental and numerical investigation to study the influence of the ribs' pitch distance and ribbed tube configuration on heat transfer using TiO 2 nanofluid in a turbulent regime with Reynolds numbers of 5000‐40 000. Meanwhile, the fluid properties are assumed to be constant with temperature under uniform heat flux. The average nanoparticle size is 50 nm and volume fractions of 0% to 1% are adopted. The study is accomplished by using the finite volume method, and its objective involves finding a low friction factor and high heat transfer enhancement in the presence of TiO 2/water nanofluids. In comparison with the plain tube, a helical ribbed tube provides higher performance evaluation criteria (about 2.0%), while circumferentially ribbed tube provides 1.9% and longitudinal ribbed tube provides 1.88%. The helical ribbed tubes with a 5.89 mm pitch distance gave higher turbulent kinetic energy due to a stronger swirl intensity, resulting in a thinner thermal boundary layer and a higher Nusselt number with uniform distribution. The nonlinear models of friction factor and Nusselt number have been predicted with a maximum deviation of ±3% and ±2%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号