首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Oxygen evolution and reduction reactions play a critical role in determining the efficiency of the water cycling (H2O ⇔ H2 + 12O2), in which the hydrogen serves as the energy carrier. That calls for a comprehensive understanding of oxygen electrocatalysis for efficient catalyst design. Current opinions on oxygen electrocatalysis have been focused on the thermodynamics of the reactant/intermediate adsorption on the catalysts. Because the oxygen molecule is paramagnetic, its production from or its reduction to diamagnetic hydroxide/water involves spin-related electron transfer. Both electron transfer and orbital interactions between the catalyst and the reactant/intermediate show spin-dependent character, making the reaction kinetics and thermodynamics sensitive to the spin configurations. Herein, a brief introduction on the spintronic explanation of the catalytic phenomena on oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is given. The local spin configurations and orbital interactions in the benchmark transition-metal-based catalysts for OER and ORR are analyzed as examples. To further understand the spintronic oxygen electrocatalysis and to develop more efficient spintronic catalysts, the challenges are summarized and future opportunities proposed. Spin electrocatalysis may emerge as an important topic in the near future and help integrate a comprehensive understanding of oxygen electrocatalysis.  相似文献   

4.
5.
The search for new high-performance and low-cost cathode materials for Li-ion batteries is a challenging issue in materials research. Commonly used cobalt- or nickel-based cathodes suffer from limited resources and safety problems that greatly restrict their large-scale application, especially for electric vehicles and large-scale energy storage. Here, a novel Li–Mn–O Li-rich cathode material with R3¯m symmetry is developed via intralayer Li/Mn disordering in the Mn-layer. Due to the special atomic arrangement and higher R3¯m symmetry with respect to the C2/m symmetry, the oxygen redox activity is modulated and the Li in the Li-layer is preferentially thermodynamically extracted from the crystal structure instead of Li in the Mn-layer. The as-obtained material delivers a reversible capacity of over 300 mAh g−1 at 25 mA g−1 and rate capability of up to 260 mAh g−1 at 250 mA g−1 within 2.0–4.8 V. The excellent performance is attributed to its highly structural reversibility, mitigation of Jahn–Teller distortion, lower bandgap, and faster Li-ion 2D channels during the lithium-ion de/intercalation process. This material is not only a promising cathode material candidate but also raises new possibilities for the design of low-cost and high-performance cathode materials.  相似文献   

6.
Hybrid control charts have become part of statistical process control (SPC) but still, need more emphasis. Researchers are developing charts for joint monitoring of process mean and variance shifts just like Max-EWMA and their hybrid version using auxiliary information but are ignoring the effect of measurement error on the efficiency of charts. We propose maximum hybrid exponentially weighted moving average with measurement error using auxiliary information and name it Max-HEWMAMEAI control chart. The efficiency of this chart is proved through calculations of average run lengths (ARLs) and standard deviations of run lengths (SDRLs) using the Monte Carlo simulations method whereas, ARLs and ◂⋅▸SDRLs are shown in tabular form. The effect of measurement error on the efficiency of the chart has been analyzed and the impact of multiple measurements to reduce the error effect has been studied using the covariate model. Real-life application is also part of this article to support the simulation results.  相似文献   

7.
8.
9.
10.
Electron spins in silicon offer a competitive, scalable quantum-computing platform with excellent single-qubit properties. However, the two-qubit gate fidelities achieved so far have fallen short of the 99% threshold required for large-scale error-corrected quantum computing architectures. In the past few years, there has been a growing realization that the critical obstacle in meeting this threshold in semiconductor qubits is charge noise arising from the qubit environment. In this work, a notably low level of charge noise of S0 = 0.0088 ± 0.0004 μeV2 Hz−1 is demonstrated using atom qubits in crystalline silicon, achieved by separating the qubits from surfaces and interface states. The charge noise is measured using both a single electron transistor and an exchange-coupled qubit pair that collectively provide a consistent charge noise spectrum over four frequency decades, with the noise level S0 being an order of magnitude lower than previously reported. Low-frequency detuning noise, set by the total measurement time, is shown to be the dominant dephasing source of two-qubit exchange oscillations. With recent advances in fast (≈μs) single-shot readout, it is shown that by reducing the total measurement time to ≈1 s, 99.99% two-qubit ◂√▸SWAP gate fidelities can be achieved in single-crystal atom qubits in silicon.  相似文献   

11.
12.
13.
14.
15.
16.
In phase I of statistical process control (SPC), control charts are often used as outlier detection methods to assess process stability. Many of these methods require estimation of the covariance matrix, are computationally infeasible, or have not been studied when the dimension of the data, p, is large. We propose the one-class peeling (OCP) method, a flexible framework that combines statistical and machine learning methods to detect multiple outliers in multivariate data. The OCP method can be applied to phase I of SPC, does not require covariance estimation, and is well suited to high-dimensional data sets with a high percentage of outliers. Our empirical evaluation suggests that the OCP method performs well in high dimensions and is computationally more efficient and robust than existing methodologies. We motivate and illustrate the use of the OCP method in a phase I SPC application on a N=354, p=1917 dimensional data set containing Wikipedia search results for National Football League (NFL) players, teams, coaches, and managers. The example data set and R functions, OCP.R and OCPLimit.R, to compute the respective OCP distances and thresholds are available in the supplementary materials.  相似文献   

17.
Synthetic-type charts are efficient tools for process monitoring. They are easy to design and implement in practice. The properties of these charts are usually evaluated under the assumption of known process parameters. This assumption is sometimes violated in practice, and process parameters have to be estimated from different phase I data sets collected by different practitioners. This fact causes the between-practitioners variability among the properties of the synthetic-type charts designed for each practitioner. In fact, the shape of the run length distribution of the synthetic-type charts changes with the mean shift size. As a good alternative, the median run length (MRL) metric is argued to evaluate the properties of different control charts. In this paper, the MRL is used as a measure of the synthetic X¯ chart's performance, and the conditional MRL properties of the synthetic X¯ chart with unknown process parameters are investigated. Both the average MRL ( AMRL) and the standard deviation of MRL ( ◂⋅▸SDMRL) are used together to investigate the chart's properties when the process parameters are unknown. If the available number of phase I samples is not large enough to reduce the variability of the in-control MRL values to an acceptable level, a bootstrap-type approach is suggested to adjust the control limits of the synthetic X¯ chart and to further prevent many unwanted lower in-control MRL values.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号