首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
采用静态吸附方法从7种大孔吸附树脂中选择出最佳树脂,采用动态吸附的方法选择出分离皂角刺总黄酮的最佳工艺。结果 AB-8大孔吸附树脂对皂角刺中总黄酮分离纯化效果较好;最佳工艺条件为:0. 2 g/mL的皂角刺提取液、2 mL/min的上样流速、洗脱剂为70%的乙醇溶液、2 mL/min的洗脱流速。故采用AB-8大孔吸附树脂分离纯化皂角刺总黄酮,其含量可达到62. 5%。  相似文献   

2.
通过静态吸附解吸实验以及动态吸附解吸实验,优化了AB-8大孔树脂纯化柑橘皮黄酮的工艺。结果表明,AB-8大孔树脂的静态吸附:饱和吸附量15 mg/g(以树脂湿重计),饱和吸附时间180 min,样液最佳p H 5. 5,样液中黄酮浓度高有利于吸附; AB-8大孔树脂的静态解吸液乙醇最佳浓度为80%,黄酮解吸速度很快,少量解吸液可较好地洗脱而得到高浓度黄酮溶液;动态吸附流速3 BV/h,解吸流速6 BV/h,纯化柑橘黄酮的回收率为75. 07%,纯化倍数为4. 14;柑橘皮黄酮主要以糖苷形式存在,苷元较少。  相似文献   

3.
通过静态吸附解吸实验以及动态吸附解吸实验,优化了AB-8大孔树脂纯化柑橘皮黄酮的工艺。结果表明,AB-8大孔树脂的静态吸附:饱和吸附量15 mg/g(以树脂湿重计),饱和吸附时间180 min,样液最佳p H 5. 5,样液中黄酮浓度高有利于吸附; AB-8大孔树脂的静态解吸液乙醇最佳浓度为80%,黄酮解吸速度很快,少量解吸液可较好地洗脱而得到高浓度黄酮溶液;动态吸附流速3 BV/h,解吸流速6 BV/h,纯化柑橘黄酮的回收率为75. 07%,纯化倍数为4. 14;柑橘皮黄酮主要以糖苷形式存在,苷元较少。  相似文献   

4.
以总黄酮的吸附量、回收率及解吸率为考察指标,研究了大孔吸附树脂分离纯化追风伞总黄酮的工艺条件。通过静态吸附实验比较了7种不同类型大孔吸附树脂的吸附特性,确定了D101型大孔吸附树脂用于追风伞总黄酮的纯化富集。通过动态吸附实验,确定了D101型大孔吸附树脂分离纯化追风伞总黄酮的最佳工艺条件为:上样液浓度1.839 mg.mL-1,上样流速为2.0 mL.min-1,洗脱剂为70%乙醇,洗脱剂用量为6 BV。在此条件下,D101型大孔吸附树脂对追风伞总黄酮的动态饱和吸附量为80.05 mg.g-1,纯化后追风伞总黄酮的纯度达到86.2%。D101型大孔吸附树脂可以较好地分离纯化追风伞总黄酮。  相似文献   

5.
依据东北岩高兰总黄酮的吸附和解吸能力,采用静态吸附和解吸实验对8种型号的大孔吸附树脂进行筛选。结果显示,AB-8型大孔吸附树脂对东北岩高兰总黄酮具有较好的吸附和解吸性能。经HPLC分析提取出的东北岩高兰主要有5种成分。进一步探究了总黄酮的纯化工艺,得到5种成分的最佳静态吸附解吸条件为:吸附平衡时间1.0 h,解吸溶剂为体积分数95%的乙醇,解吸平衡时间1.5 h。不同温度(25、30、35℃)下,AB-8型大孔吸附树脂对东北岩高兰不同成分的吸附等温线均符合Freundlich模型和Langmuir模型。5种成分的最佳动态吸附洗脱工艺条件为:上样液质量浓度为5 g/L,最大上样量400 mL,5倍柱体积(BV)的体积分数为20%的乙醇洗脱杂质,5倍BV的体积分数为95%的乙醇洗脱成分,洗脱流速3m L/min。在最佳实验条件下,东北岩高兰总黄酮的质量分数由纯化前的49.16%提高到纯化后的89.59%,表明AB-8型大孔吸附树脂能够有效纯化东北岩高兰。  相似文献   

6.
《云南化工》2015,(3):1-5
研究了八角莲中黄酮类化合物的分离纯化工艺。考察各种因素对树脂吸附和洗脱效果的影响,确定了AB-8型大孔树脂分离纯化八角莲中黄酮类化合物的最佳工艺参数。最佳工艺参数为:静态吸附,树脂与样液比为1:20 g/m L、吸附时间为3 h,静态解吸过程解吸液(乙醇)体积分数为70%、树脂与解吸液的比例为1∶50 g/m L;动态吸附中动态流速为0.5 m L/min、静置时间为80 min,动态解吸中洗脱液(乙醇)的体积分数为60%、树脂与洗脱液的比例为1∶40 g/m L。  相似文献   

7.
AB-8大孔树脂对1,2-环己二醇动态吸附性能   总被引:1,自引:0,他引:1  
曹运兵  谢艳新  侯丽丽  蒋登高 《精细化工》2011,28(12):1203-1208,1227
针对双氧水氧化环己烯合成环氧环己烷的反应体系,采用大孔树脂动态吸附分离反应液水相中的1,2-环己二醇。结果表明,在自行设计吸附柱的基础上,AB-8大孔树脂吸附分离反应液水相中1,2-环己二醇的较佳条件为:上样流速1.0 mL/min,床层高度4.0 cm,常温;通过固定床吸附数学模型得到的速率常数、相关系数、吸附量和动力学参数,能较好地描述AB-8大孔树脂固定床吸附1,2-环己二醇的吸附动力学。以乙酸乙酯为脱附剂进行脱附的较佳条件为:洗脱流速1.0 mL/min,常温;AB-8大孔树脂经5次循环使用后其吸附率和脱附率仍在80%以上。  相似文献   

8.
比较了8种大孔吸附树脂D101、AB-8、NKA-9、D4020、S-8、200702、H103、NKA-Ⅱ对菊米总黄酮的吸附性能,以大孔吸附树脂对菊米总黄酮的吸附率、洗脱率为评价指标,筛选出合适的大孔吸附树脂分离纯化菊米总黄酮,并以静态实验、动态试验考察大孔树脂对菊米总黄酮的分离纯化效果及影响因素,优化吸附和解吸条件。结果表明:200702中极性树脂分离纯化菊米总黄酮效果较好,其最佳吸附工艺为:上样液pH 5~6,质量浓度0.35 mg?mL-1,上样液流速3.0 mL?min-1,最佳洗脱工艺为:70%乙醇溶液30 mL,洗脱速率2.5 mL?min-1,通过本工艺菊米总黄酮纯度达83.5%。  相似文献   

9.
采用不同大孔吸附树脂分离纯化猪毛菜总黄酮,并对纯化后的总黄酮进行体外抗氧化活性测试。通过考察影响树脂静态和动态吸附与洗脱的主要因素,确定猪毛菜总黄酮分离纯化优化工艺条件。静态吸附实验表明,AB-8树脂分离纯化效果较好,并且吸附符合Langmuir和Freundlich方程。动态吸附和解吸的最佳工艺条件为:上样液质量浓度1.25 g/L、p H=4.5、上样流速2 m L/min、上样量2.5 BV(BV指树脂柱内装载树脂的体积)、洗脱剂为体积分数80%的乙醇溶液、洗脱流速1.0 m L/min,洗脱剂用量4 BV。所得洗脱液中黄酮质量分数从纯化前10.20%增加到纯化后51.89%,回收率为84.43%。体外实验表明,纯化后的黄酮可以清除羟自由基和超氧阴离子自由基,并有较好的还原力。纯化后的黄酮可以作为一种潜在的天然抗氧化剂。  相似文献   

10.
研究了大孔吸附树脂富集款冬花总黄酮的工艺。从5种大孔吸附树脂中筛选出AB-8型大孔吸附树脂适合富集款冬花总黄酮,并通过单因素实验确定适宜的富集工艺为:将4BV的款冬花样品液以3BV·h-1的速度上样,吸附40min,用4BV的纯化水以6BV·h-1的速度冲洗杂质,再用4BV的60%乙醇洗脱总黄酮。该树脂稳定性良好,可连续使用6次。  相似文献   

11.
目的:优化并确定丹参总酚酸大孔树脂纯化的最佳工艺。方法:以丹参酚酸B含量为考察指标,对大孔树脂纯化工艺参数进行了考察。结果:研究确定大孔吸附树脂最佳工艺条件为:选用AB-8树脂,以10倍药材量,30%乙醇作为洗脱溶媒,洗脱速度以1m L/min为宜,丹参样品上样浓度为0.5g生药/m L,吸附流速以1m L/min,最大上柱体积为60m L为宜。结论:大孔树脂吸附法是丹参总酚酸纯化工艺的有效方法。  相似文献   

12.
王可  俞娟  周安  周娟  王效山 《安徽化工》2009,35(2):39-41
目的:优选分离纯化新藤黄酸的大孔树脂。方法:通过HPLC定量分析新藤黄酸,比较了七种不同大孔树脂对新藤黄酸的吸附性能,对大孔树脂分离纯化新藤黄酸的工艺进行筛选。结果:AB-8树脂对分离新藤黄酸的吸附性能适中,可将其含量由浸膏中的16.3%提高至67%。结论:AB-8树脂吸附新藤黄酸的纯化方法可取,具有一定的应用前景。  相似文献   

13.
探讨大孔树脂分离羟基红花黄色素A的最优工艺。以菊科红花为原料,采用微波提取法,以静态吸附和解吸附量为参考指标,考察D4020、X-5、DM301、AB-8四种大孔树脂对红花中羟基红花黄色素A的分离性能及最佳洗脱浓度及pH值,在动态吸附单因素试验的基础上采用正交试验优化分离条件,采用紫外可见分光光度法对羟基红花黄色素A含量进行定量分析。研究表明:X-5树脂对红花中羟基红花黄色素A具有较好吸附和解吸附性能;最优分离条件为:流速为1.5 mL/min,径高比为1∶10,上样量为柱体积的3%。此方法简单可行,重现性好。  相似文献   

14.
分析大孔树脂与人参皂苷之间的吸附行为,优化大孔树脂分离人参皂苷的条件。选用6种大孔树脂(D101、HPD-100、AB-8、NKA-9、ADS-7、DM130),以二醇型人参皂苷(Rg1、Re、Rg2)和三醇型人参皂苷(Rc、Rb1、Rd)的含量为评判指标,进行吸附率、解吸率与吸附容量比较,发现纯化人参皂苷的最适大孔树脂为HPD-100。然后对其静态吸附时间、吸附温度、吸附初始浓度与动态加载流速、加载量、洗脱溶剂等进行考察,筛选最佳纯化工艺。二醇型人参皂苷与三醇型人参皂苷在HPD-100大孔树脂上静态吸附量为109 mg/g,吸附率分别为99.93%与56%,解吸率分别为96.4%与98.5%,静态最佳吸附时间为190 min,吸附初始浓度为32 mg/mL,温度为35℃,动态加载流速为4 BV/h(每小时4个柱体积),加载量8 BV(柱体积),洗脱剂为40%和60%乙醇。最终三醇型皂苷的纯化率为66%,二醇型皂苷的纯化率为52%。表明HPD-100D大孔树脂可以用于二醇型人参皂苷和三醇型人参皂苷的分离纯化。  相似文献   

15.
《应用化工》2022,(Z1):214-216
用大孔树脂分离纯化地黄提取物中有效成分梓醇,考察了4种不同极性大孔吸附树脂对梓醇的吸附和解吸附性能,筛选出最佳树脂AB-8进行分离实验,考察最佳上样量、吸附时间以及洗脱溶剂。结果表明,地黄提取物中梓醇的分离纯化最佳工艺条件是:上样量171 mg/g树脂,吸附时间为0. 5 h,用不同乙醇浓度进行梯度洗脱,得到梓醇粗品,含量达64. 82%。  相似文献   

16.
针对双氧水氧化环己烯合成环氧环己烷的反应体系,采用大孔树脂动态吸附分离反应液水相中的1,2-环己二醇。结果表明,在自行设计吸附柱的基础上,AB-8大孔树脂吸附分离反应液水相中1,2-环己二醇的较佳条件为:上样流速1.0 mL/min,床层高度4.0 cm,常温;通过固定床吸附数学模型得到的速率常数、相关系数、吸附量和动力学参数, 能较好地描述AB-8大孔树脂固定床吸附1,2-环己二醇的吸附动力学。以乙酸乙酯为脱附剂进行脱附较佳条件为:洗脱流速1.0 mL/min,常温;AB-8大孔树脂经5次循环使用后其吸附率和脱附率仍在80%以上。  相似文献   

17.
采用静态吸附实验考察了D-101、DM-301、AB-8、D001、D201、D113、D202等大孔树脂对茶皂素的纯化效果,并考察了上样速度、溶剂体积、上样液质量浓度对大孔树脂AB-8动态吸附率的影响以及洗脱液浓度、洗脱速度、洗脱剂体积对动态洗脱率的影响。大孔吸附树脂AB-8纯化茶皂素的最佳工艺条件为:上样液浓度为27 mg/mL,流速为2.5 mL/min,洗脱剂为75%乙醇,用量为上样液体积的2倍,洗脱速度为2.5mL/min,可以得到纯度为85.7%的茶皂素。  相似文献   

18.
采用静态吸附实验考察了D-101、DM-301、AB-8、D001、D201、D113、D202等大孔树脂对茶皂素的纯化效果,并考察了上样速度、溶剂体积、上样液质量浓度对大孔树脂AB-8动态吸附率的影响以及洗脱液浓度、洗脱速度、洗脱剂体积对动态洗脱率的影响。大孔吸附树脂AB-8纯化茶皂素的最佳工艺条件为:上样液浓度为27 mg/mL,流速为2.5 mL/min,洗脱剂为75%乙醇,用量为上样液体积的2倍,洗脱速度为2.5mL/min,可以得到纯度为85.7%的茶皂素。  相似文献   

19.
马艳 《化学工程师》2020,34(3):69-72,60
为研究大孔树脂纯化何首乌中蒽醌类化合物粗提物的最佳工艺,比较不同型号树脂的静态吸附与洗脱性能,筛选合适的树脂型号后,采用单因素试验探讨树脂的动态吸附与洗脱条件,以确定最佳纯化工艺条件,并进行不同物质的抗运动性疲劳作用研究。实验结果表明,最佳纯化工艺条件为:体积为60mL,6mg·mL~(-1)的粗提物溶液,以2.0mL·min~(-1)流速上样至AB-8型大孔树脂吸附后,使用150mL,80%乙醇溶液,以1.0mL·min~(-1)流速洗脱,纯化前后产物的蒽醌类化合物含量由17.25%提高至36.05%。同时与空白对照相比,纯化后产物可明显延长动物的负重游泳时间(P0.01),并有助于降低其运动后的体内乳酸蓄积(P0.01),从而具有较好抗运动性疲劳功能。  相似文献   

20.
以栾树叶多酚提取物为原料,比较了7种大孔树脂对栾树叶多酚的静态吸附与解吸效果,结果表明AB-8树脂性能最佳,其24h静态吸附量为13.74mg/g,解吸率为98.35%,3h内达到吸附平衡与解吸平衡。AB-8树脂动态吸附较佳条件为上样液质量浓度为4g/L,上样液pH值为6,在此条件下吸附率为88.21%,动态洗脱较佳条件为洗脱剂乙醇体积分数为60%,洗脱速度为1mL/min,解吸率达到89.91%,在该条件下栾树叶总多酚经AB-8树脂纯化后,质量分数由50.36%增加到72.37%,回收率为86.83%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号