首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
本文对国外某含铜金矿开展氨氰选择性浸金及浸出贵液臭氧除铜工艺试验研究,研究结果表明:在给矿粒度-0.074mm95%,硫酸铵8kg/t,氰化钠0.4kg/t,石灰4kg/t(pH为9-10),矿浆浓度40%,金浸出率约90.3%;氨氰浸出贵液初始pH10~11,通入臭氧除铜,铜沉淀率达99.0%,金基本不损失,沉铜渣铜品位33.89%,可以铜精矿形式出售。  相似文献   

2.
介绍了采用“浮选-浮选精矿销售-浮选尾矿直接炭浆法氰化浸出”工艺方案综合回收中亚某矿山过渡带难选含铜金矿中的金和铜。该矿原矿石含金3.52g/t、银11.20g/t、铜0.54%、砷0.40%、硫1.54%,其中氧化物铜含量为0.22%,占总铜含量的40.74%,金、铜嵌布粒度微细,嵌布关系复杂,属于复杂难选含氧化铜金矿。针对该矿特点,通过引进氧化铜类捕收药剂体系,增加精选级数,按照便于现场技改的硫化物铜、氧化物铜混合浮选工艺进行金铜浮选回收,对浮选尾矿进行直接炭浆法氰化浸出回收金。最终可获得浮选精矿产率3.92%,含金48.50g/t,含铜8.45%的可销售精矿,浮选尾矿含铜0.21%,可氰化铜含量0.12%,浮选尾矿直接炭浸所需氰化钠用量为3.1kg/t,金浸出率74.71%,浮选+浸出金综合回收率88.26%,铜回收率62.16%。与现场原工艺“浮选-浮选精矿销售-浮选尾矿氨氰法抑铜浸金-氨氰尾浆炭浸”相比,浮选精矿产率接近,精矿金铜品位更优,金综合回收率提高了6.02%,铜回收率提高了9.24%。试验成果已作为现场技改依据。  相似文献   

3.
陈向  廖德华 《金属矿山》2021,50(5):120-124
广东某含铜浮选金精矿的金品位为8.312 g/t、铜含量为5.18%,工业上采用全泥氰化、浸出渣浮选回收铜的工艺流程。矿石中较高的铜含量不仅消耗大量的氰化物,还影响了金的浸出效果。为了进一步提高金的浸出率、降低氰化物用量,采用加温常压化学预氧化浸铜—浸铜渣氰化浸金工艺回收试样中的铜和金,并在磁处理条件下,考察了磁场强度、磁化时间、起始硫酸浓度、NaCl浓度、浸出温度和浸出时间等因素对金、铜浸出率的影响。试验确定磁处理的最佳条件为:磁场强度150 kA/m,磁化时间50 min,磨矿细度-200目占88%,预氧化温度93 ℃,起始硫酸浓度0.77 mol/L,NaCl浓度0.76 mol/L,预氧化时间27 h。在此条件下进行氧化预处理浸铜及铜渣氰化浸金试验,固定搅拌强度为760 r/min,液固比为3∶1,氧气流量为160 mL/min,氰化钠用量为7 kg/t,铜和金的浸出率分别为85.76%、98.86%。较未进行磁处理的最佳指标(铜浸出率71.28%,金浸出率86.26%)相比,铜浸出率提高了14.48个百分点,金浸出率提高了12.60个百分点;此外,预氧化温度降低了2 ℃,预氧化时间减少了1 h,氰化钠用量减少了3 kg/t。研究结果表明磁处理能有效提高含铜金矿的铜、金浸出率,减少有毒氰化物的用量。  相似文献   

4.
摘要:吉林某含铜金矿含铜11%~13%,含金30~50g/t,由于金部分被黄铜矿等硫化物包裹,直接氰化浸出,金的浸出率只有48.9%。针对矿石性质,进行了硫代硫酸盐-氨水体系的浸金试验研究,重点考察了浸出时间、浸出液固比、硫代硫酸盐浓度和氨水浓度等因素对金浸出的影响。结果表明,在综合条件下浸出24h,金浸出率可达92%。为非氰浸金提供了一种新的思路和工艺,对类似的含铜金矿中金的回收有重要借鉴意义。后续还要加强对浸出液中金的回收研究。   相似文献   

5.
为了提高硫酸化焙砂中金和铜的浸出率,降低尾渣金品位,减少铜对氰化浸出过程的影响,考察了焙砂粒度、硫酸浓度、温度对硫酸脱铜率和脱铜渣氰化浸金率的影响。结果表明,焙砂(矿粉粒度-0.045 mm粒级占90.16%)在酸度25 g/L、液固比1.5∶1、80 ℃下浸出2 h,硫酸脱铜率达93.62%。脱铜渣在NH4HCO3用量10 kg/t、液固比1.5∶1、NaCN浓度0.10%条件下浸出60 h,金浸出率高达98.04%。根据研究结果,通过提高硫酸脱铜温度、硫酸浓度和氰化浸出过程增加旋流器和浸出槽数,采用两段浸出-两段洗涤措施,对现有生产流程进行了优化,铜和金回收率得到了明显提高,获得较好的经济效益。  相似文献   

6.
陈庆根 《矿冶工程》2019,39(5):106-110
针对含铜氧化金矿采用氨氰选择性浸出提金,考察了分段加药制度、硫酸铵用量、矿石粒度等对金浸出率及浸出液铜金比的影响。结果表明:当硫酸铵用量8.00 kg/t,氰化钠用量0.60 kg/t,石灰用量5.00 kg/t,矿浆浓度40.00%,磨矿细度-0.074 mm粒级含量不低于95.00%时,平均金、铜浸出率分别为86.66%和1.16%。工业试验连续运行70 d,氰化尾渣金品位约0.55 g/t,金吸附率99%,金解吸率99.2%,电积回收率99.5%,金精炼回收率99.5%,金锭纯度99.99%,产品金达到国标Au-1标准。  相似文献   

7.
内蒙古某金矿含金2.83 g/t,目前采用氰化钠浸出—树脂吸附工艺提金,浸渣总氰含量高达50 mg/kg。为降低氰化物用量,使得浸渣氰化物浓度达到充填技术标准,采用尼尔森重选—重选尾矿低氰浸出工 艺对内蒙古某金矿进行提纯试验研究,重点考察重选尾矿的磨矿细度、金欣用量、氧化钙用量、液固比及浸出时间对浸出效果的影响。结果表明:①在磨矿细度为-0.043 mm占87%、分选G值为80 G、流态化水量为3 L/min、给矿浓度为50%的条件下,采用“1粗2扫”工艺流程进行尼尔森重选,金累计回收率达到55.91%,金累计品位为35.48 g/t,重选尾矿含金1.34 g/t。②对重选尾矿进行低氰浸出条件试验,确定适宜的磨矿细度 为-0.043 mm占79%,氧化钙用量为5 kg/t,金欣用量为1 200 g/t,浸出时间为36 h,液固比为1.5 mL/g,此时金浸出率为91.88%,重选—浸出工艺流程综合回收率达96.42%;在上述条件下,采用树脂吸附处理贵液, 金吸附率为86.94%,合计重选—浸出—吸附全流程的金综合回收率为91.13%,指标良好。试验最终获得的浸渣总氰浓度为0.50 mg/kg,达到尾矿充填技术标准。  相似文献   

8.
哥伦比亚某含铜金银矿矿石中有价元素金、银、铜含量分别为7.61 g/t、44.62 g/t和0.10%.原采用重选—重选尾矿直接氰化浸出工艺,银浸出率低、铜大量浸出,贵液后续处理困难.针对以上问题,采用重选—重选尾矿优先浮铜—浮铜尾矿浮选金银—金银精矿氰化浸出的选冶联合工艺开展试验研究.结果表明:①该矿石中硫化矿物主要为黄铁矿,含金矿物以银金矿为主,含银矿物主要为锑黝铜矿,铜矿物主要为黄铜矿.②矿石采用两段尼尔森重选—超级选金机精选的重选工艺,可获得综合重选金精矿含金34.10 kg/t、含银9.34 kg/t、含铜0.072%,金回收率44.56%,银回收率2.06%、铜回收率0.0066%.③对重选尾矿采用优先浮铜工艺,在磨矿细度为-74μm占64%的条件下,以Na2CO3为调整剂、Z-200为捕收剂,经2粗2精,可获得铜品位24.47%、金品位402.4 g/t、银品位8841.6 g/t、铜回收率63.92%、金回收率25.62%、银回收率55.96%的铜精矿.④采用选冶联合工艺流程处理该矿石,全流程试验可获得金综合回收率88.21%、银综合回收率77.02%、铜回收率63.92%的指标.不仅回收了铜矿物,降低了铜浸出量和氰化钠单耗,还改善了贵液后续处理过程.同时,银综合回收率提升明显,极大降低了氰化尾渣的处理量.  相似文献   

9.
哥伦比亚某含铜金银矿矿石中有价元素金、银、铜含量分别为7.61 g/t、44.62 g/t和0.10%.原采用重选—重选尾矿直接氰化浸出工艺,银浸出率低、铜大量浸出,贵液后续处理困难.针对以上问题,采用重选—重选尾矿优先浮铜—浮铜尾矿浮选金银—金银精矿氰化浸出的选冶联合工艺开展试验研究.结果表明:①该矿石中硫化矿物主要为黄铁矿,含金矿物以银金矿为主,含银矿物主要为锑黝铜矿,铜矿物主要为黄铜矿.②矿石采用两段尼尔森重选—超级选金机精选的重选工艺,可获得综合重选金精矿含金34.10 kg/t、含银9.34 kg/t、含铜0.072%,金回收率44.56%,银回收率2.06%、铜回收率0.0066%.③对重选尾矿采用优先浮铜工艺,在磨矿细度为-74μm占64%的条件下,以Na2CO3为调整剂、Z-200为捕收剂,经2粗2精,可获得铜品位24.47%、金品位402.4 g/t、银品位8841.6 g/t、铜回收率63.92%、金回收率25.62%、银回收率55.96%的铜精矿.④采用选冶联合工艺流程处理该矿石,全流程试验可获得金综合回收率88.21%、银综合回收率77.02%、铜回收率63.92%的指标.不仅回收了铜矿物,降低了铜浸出量和氰化钠单耗,还改善了贵液后续处理过程.同时,银综合回收率提升明显,极大降低了氰化尾渣的处理量.  相似文献   

10.
含铜氰化液脱铜试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
本文针对含铜氰化液进行了氧化沉淀脱铜试验研究,主要开展了氧化脱铜氧化试剂用量、脱铜和沉淀pH、氧化和沉淀时间条件试验,试验结果表明:氰化贵液在氧化试剂0.25kg/m3氧化2小时,调节氧化后液溶液pH=10.50沉淀1小时,氧化沉淀后液溶液铜氰比小于1,活性炭吸附后,载金炭金品位达到3.5kg/t,铜品位仅1-2kg/t。  相似文献   

11.
硫化铜钴精矿经硫酸化焙烧-酸浸后得到的浸出渣,仍含有较多的铜和钴。针对此铜钴浸出渣进行了加压浸出工艺研究。结果表明:液固比6:1,初始硫酸浓度100g/L,常温预浸30min后,在浸出温度180℃,氧气分压0.1MPa,浸出3h等条件下,铜和钴的浸出率分别达到96.5%和98.1%,铁浸出率约8.3%,大部分的铁抑制在渣中。  相似文献   

12.
针对酸法地浸采铀工艺特点,从采区不同溶浸阶段、满足铀矿石浸出要求、围岩成分及矿层堵塞等方面讨论了浸出剂酸度控制的影响因素及酸耗的主要来源,探讨了浸出剂酸度的控制方法。结果表明:酸法地浸中,酸耗的主要来源为方解石、铁氧化物、硫化物、绿泥石等非铀矿物,应优先考虑低酸浸出,并在不同浸出阶段适当调减浸出剂酸浓度,以满足浸出液中剩余硫酸浓度为0.5~2.0g/L较为合适。511矿床实际应用中,溶浸期浸出剂酸度为5g/L左右、溶浸末期为2~3g/L可满足生产需求。  相似文献   

13.
研究了助浸剂对某矿山钒矿直接酸浸的影响。实验结果表明,添加5%HJZ-1#、5%HJZ-2#混合添加剂,钒的浸出率可从47.58%提高到85.31%。钒矿浸出渣工艺矿物学研究表明,助浸剂的加入有利于难溶硅酸盐包裹中钒的浸出,从而提高钒的浸出率。  相似文献   

14.
李旭  雷林  何鲲 《金属矿山》2004,(Z1):377-380
浸出技术是地浸采在一些问题.从施工技术管理角度验证和完善浸出理论,以期保证和提高浸出效果.  相似文献   

15.
根据原地爆破浸出工艺特点及浸出的物理——化学原理,总结提出了影响原地爆破浸出率的主要因素。从矿石的物理、化学性质,待浸矿堆的物理特性以及浸出工艺参数3个方面分析讨论了矿石的裂隙发育程度、矿石中有害元素或化合物的含量、筑堆矿石块度、矿堆的孔隙度、矿堆的渗透性、浸出剂浓度和氧化剂等对浸出率的影响。  相似文献   

16.
通过室内摇瓶浸出试验,研究了不同粒级的原生硫化矿石铜的浸出率与时间的相关性。结果表明:采用液固比10:1,pH〈2.0的微生物浸出此类矿石,可以得到较好的浸出效果,总浸出率能达到32.6%。浸出液pH值在反应前30d逐渐上升,之后基本保持稳定;浸出液中溶解氧、菌种浓度等呈上升趋势。浸取液中的Cun浓度逐渐升高,粒径最小的矿样其浓度最大,浸出效果最好。浸取液中的ate离子浓度呈上升趋势,反应从第10~30d,浓度趋于平缓,30d之后,反应加剧,浓度上升较快。铜的浸出率与浸出反应时间呈一次线性关系递增,相关系数R保持在0.95以上,其曲线拟合得很好。  相似文献   

17.
以湖南柏坊铜矿的尾砂为研究对象。针对高碱性低品位氧化铜矿,本实验采用(NH4)2CO3-NH3-H2O体系堆浸的办法,得到了该尾砂的最佳浸出条件:NH4 的浓度9 mol/L,浸出时间3 h,浸出温度40℃,液体的体积与尾砂的质量比为5∶1。由浸出过程的动力学分析得到:尾矿粒度广泛分布且不遵循粉矿理论的4种典型分布,在该前提下,在浸出过程中粒径的改变量随时间的变化而呈线性变化,与初始粒径无关。  相似文献   

18.
地浸采铀细菌浸出试验研究   总被引:4,自引:2,他引:2  
对新疆某采区铀矿石进行了细菌浸出试验研究。利用自行设计加工的生物反应器, 采用经过驯化培养后的氧化亚铁硫杆菌(T f)进行试验。室内外2年多的试验证明:生物反应器细菌固定效果好、氧化效率高、结构简单、操作方便、成本低; 细菌经过驯化后, 能适应新疆低温条件和地浸采铀溶液环境条件, 在正常连续细菌氧化工艺中, 地浸采铀溶液成分可作为细菌的营养物质, 不需另外补充; 用细菌作氧化剂不但能达到氧化Fe2+的目的, 还能提高浸出液中金属铀浓度和金属铀的浸出率, 且对环境无副作用, 具有较好的应用前景。  相似文献   

19.
采用碱性加压氧化法处理钼镍矿的提镍渣以回收有价金属钼,考察了氢氧化钠浓度、浸出时间、浸出温度、氧分压以及碳酸钠取代率对钼浸出率的影响。试验结果表明,在氢氧化钠浓度为100 g/L,液固比为3∶1,反应时间为2.0 h,浸出温度为80℃,氧分压为700 k Pa,搅拌速度为500 r/min的条件下,钼的浸出率可以达到97%以上。  相似文献   

20.
含富铟铁酸锌锌浸渣中铟的微波强化酸浸   总被引:1,自引:0,他引:1  
常规酸浸很难高效浸出富铟铁酸锌中的铟,为了探索提高铟浸出率的低耗、高效工艺,以广西柳州锌品厂含富铟铁酸锌的锌浸渣为对象,进行了微波助浸工艺及工艺参数研究。结果表明:微波直接酸浸工艺具有简单、高效的特点,其铟浸出率明显高于常规酸浸和微波预处理+常规酸浸工艺,与微波预处理+微波酸浸工艺的铟浸出率十分接近;搅拌速度、硫酸初始浓度、液固比、浸出温度、浸出时间对铟浸出率均有显著影响;在搅拌速度为550 r/min、硫酸初始浓度为1.5 mol/L、液固比为10 mL/g、浸出温度为75℃、浸出时间为90 min情况下,对锌浸渣进行微波直接酸浸铟,铟浸出率可达77.0%,较常规酸浸铟浸出率高19.9个百分点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号