首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT:  Antioxidants (ascorbyl palmitate and α-tocopherol) were incorporated into 10% (w/w) whey protein isolate (WPI) coating solution containing 6.67% (w/w) glycerol (WPI:glycerol = 6:4). Before incorporation, the antioxidants were mixed using either powder blending (Process 1) or ethanol solvent-mixing (Process 2). After the antioxidant mixtures were incorporated into heat-denatured WPI solution, viscosity and turbidity of the WPI solutions were determined. The WPI solutions were dried on a flat surface to produce WPI films. The WPI films were examined to determine transparency and oxygen-barrier properties (permeability, diffusivity, and solubility). WPI solution containing antioxidants produced by Process 1 and Process 2 did not show any difference in viscosity and turbidity, but viscosity was greater for the WPI solution with rather than without antioxidants. WPI films produced by Process 2 were more transparent than the films produced by Process 1. Oxygen permeability of Process 1 film was lower than Process 2 film. However, both the diffusivity and solubility of oxygen were statistically the same in Process 1 and Process 2 films. Both control WPI films and antioxidant-containing WPI films had very low oxygen solubility, comparable to polyethylene terephthalate films. Permeability of antioxidant-incorporated films was not enhanced compared to control WPI films.  相似文献   

2.
A. Longares 《LWT》2004,37(5):545-550
The effect of varying thickness on the water barrier properties, tensile properties and sensory characteristics of glycerol-plasticised whey protein isolate (WPI) films was investigated. Thickness was varied by preparing films with increasingly dilute film forming WPI solutions in the range 9.5-2.3 g protein/100 g. All films had a glycerol to protein ratio of 0.37 (Gly: Pro). Tensile strength (TS), elastic modulus (EM) and film permeance were unaffected by film thickness but maximum load (ML) and % elongation (E) decreased (P<0.05) with decreasing thickness. In a sensory test with crackers and melted cheese, panelists could readily detect the thickest films (79 μm) but not the thinnest films (23 μm) (P<0.05). The results indicate that reducing the thickness of glycerol plasticised WPI films makes them less perceptible in a food system while maintaining moisture barrier and certain tensile properties.  相似文献   

3.
This study deals with the effect of whey protein isolate (WPI) and glycerol (GLY) used as a plasticizer on some physical properties of cast whey protein isolate (WPI) films. Films were prepared from heated (80 °C for 30 min) aqueous solutions of WPI at 7, 8, 9 and 10% (w/w), GLY (40%, w/w, of WPI) and WPI at 8% (w/w), GLY (30, 40, and 60%, w/w, of WPI). For all types of films, water vapour permeability for four relative humidity differentials (30–100%, 30–84%, 30–75%, and 30–53%), surface and thermal properties were measured. Varying the proportion of WPI and GLY in edible films had some effect on water vapour permeability, wetting and thermal properties of WPI films. A cumulative effect of both glycerol and protein content was observed on the water vapour permeability increase. Indeed film barrier properties are much better for the lowest WPI (7%) and GLY (40%) contents. GLY increases the degradation temperature and favours film surface wettability whereas protein content did not affects thermal properties of films.  相似文献   

4.
ABSTRACT: Films based on whey protein isolate (WPI) were formed using compression molding. Compression molded films could be formed using 30% to 50% moisture content or glycerol content WPI at 104 °C to 160 °C for 2 min. Films made from water-WPI mixtures were brittle and insoluble and had water-vapor permeability values independent of starting water-WPI mixture moisture content, molding temperature, or molding pressure. Gly-WPI films produced at 104 °C were flexible and partially soluble. Gly-WPI films produced at 140 °C were also flexible but nearly insoluble. Glycerol content and molding temperature and pressure had little effect on water-vapor permeability values of Gly-WPI films over the range of conditions studied.  相似文献   

5.
ABSTRACT: Films were formed from heated whey protein isolate (WPI) solutions (heated [H] films) and from unheated WPI solutions following adjustment to pH 11, with subsequent readjustment to pH 7 (unheated, readjusted [UR] films) or without readjustment to pH 7 (unheated, unadjusted films [UU] films). UU and UR films had significantly lower % elongation, tensile strength, and Young's modulus than H films. Film solubility and dispersion in water were in the order: H films < UU films < UR films. Free sulphydryl groups were lower and disulphide-mediated polymerization was higher in heated than in unheated WPI solutions whereas solubility of H films increased in the presence of dithiothreitol.  相似文献   

6.
ABSTRACT: The effects of whey protein hydrolysis on film water vapor permeability (WVP) and solubility at 3 plasticizer levels were studied. Little or no significant difference (p > 0.05) appeared for film WVP between unhydrolyzed whey protein isolate (WPI), 5.5% degree of hydrolysis (DH) WPI and 10% DH WPI films at comparable plasticizer contents. However, increase in glycerol (gly) content significantly increased film WVP. Thus, reduction in WPI molecular weight (MW) through hydrolysis may be a better approach to improving film flexibility than addition of plasticizer. Both 5.5% and 10% DH WPI had significantly different (p ≤ 0.05) film solubility compared to unhydrolyzed WPI. Soluble Protein (SP) and total soluble matter (TSM) of hydrolyzed WPI films were much higher than for unhydrolyzed WPI films.  相似文献   

7.
BACKGROUND: Edible films and coatings based on protein/lipid combinations are among the new products being developed in order to reduce the use of plastic packaging polymers for food applications. This study was conducted to determine the effect of rapeseed oil on selected physicochemical properties of cast whey protein films. RESULTS: Films were cast from heated (80 °C for 30 min) aqueous solutions of whey protein isolate (WPI, 100 g kg?1 of water) containing glycerol (50 g kg?1 of WPI) as a plasticiser and different levels of added rapeseed oil (0, 1, 2, 3 and 4% w/w of WPI). Measurements of film microstructure, laser light‐scattering granulometry, differential scanning calorimetry, wetting properties and water vapour permeability (WVP) were made. The emulsion structure in the film suspension changed significantly during drying, with oil creaming and coalescence occurring. Increasing oil concentration led to a 2.5‐fold increase in surface hydrophobicity and decreases in WVP and denaturation temperature (Tmax). CONCLUSION: Film structure and surface properties explain the moisture absorption and film swelling as a function of moisture level and time and consequently the WVP behaviour. Small amounts of rapeseed oil favourably affect the WVP of WPI films, particularly at higher humidities. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
Four % (wt/wt) aqueous solutions were prepared at corn starch:methylcellulose:whey protein isolate (CS:MC:WPI) ratios of 2:2:2, 1:2:3, 2:1:3, 2:2:0, 1:2:0 and 2:1:0. Glycerol (gly) was used as a plasticiser at CS–MC–WPI:gly ratios of 2:1, 2.5:1 and 3:1. CS–MC–WPI blend films were stronger than CS–WPI films and had lower oxygen permeability (OP) than MC–WPI films. The highest tensile strength (TS) of blend films was 8.01 ± 3.41 MPa, at CS:MC:WPI ratio of 2:2:0 and CS–MC–WPI:gly ratio of 3:1. Lowest OP value was 45.05 ± 7.24 cm3 μm m?2 per day kPa?1, at CS:MC:WPI ratio of 2:2:2 and CS–MC–WPI:gly ratio of 3:1. OP values were predictable based on relative amounts of components. However, TS and elastic modulus properties of the CS–MC–WPI blend films did not reflect the relative amounts of the components. All of CS–MC–WPI films were translucent indicating some degree of immiscibility among the CS, MC and WPI. These results indicate the influence of complex molecular interactions among the components.  相似文献   

9.
Whey protein films plasticised with sucrose have excellent oxygen barrier properties and high gloss that are reduced with time as sucrose crystallises. Whey protein isolate (WPI) films plasticised with sucrose were stored in 53% relative humidity for up to 60 days. The oxygen permeability, tensile properties and gloss of the films were measured periodically following ASTM (American Society for Testing Materials) methodology. Changes in properties were compared with changes in WPI films plasticised with glycerol (no crystallisation) or plasticised with sucrose (crystallisation) plus a crystallisation inhibitor. The two inhibitors studied were lactose and raffinose. Crystallisation in WPI/sucrose films decreased tensile strength and elongation at break. However, the inhibitors hindered sucrose crystallisation, and the desired film properties were maintained for a longer period of time. Raffinose was the more effective inhibitor, maintaining the film flexibility and barrier properties for over 28 days and maintaining gloss at almost 90% of the initial value for 60 days of storage.  相似文献   

10.
This study assessed the film‐forming abilities of six types of proteins, as well as six types of polysaccharides at various concentrations (proteins: 0–16%; polysaccharides: 0–4%) and heating temperatures (60–80 °C). Biopolymer films evaluated included: sodium caseinate (SC), whey protein isolate (WPI), gelatine (G); caboxymethyl cellulose (CMC), sodium alginate (SA) and potato starch (PS). Screening trials showed that optimal film‐forming conditions were achieved using SC and G (4% and 8%), WPI (8% and 12%), PS, CMC (2% and 3%) or SA (1% and 1.5%) solutions heated to 80 °C in combination with 50% (w/w) glycerol. Films manufactured from 1.5% SA, 8% G and 3% CMC had the highest tensile strength (24.88 MPa); flexibility (89.69%)/tear strength (0.30 N) and puncture resistance (22.66 N), respectively. SC, WPI and G‐based films were more resistant to solvent than SA, CMC and PS. Film permeability to water vapour and oxygen decreased in the order: 12% WPI to 1% SA and 12% WPI to 1% SA. All films tested were impermeable to oil.  相似文献   

11.
Effects of glycerol (3-7% w/w) and sorbitol (4-8% w/w) concentration, pH (7.0, 9.0, 11.0) and heating (90 °C, 20 min) of film-forming solution (FFS) on the water vapor permeability (WVP), moisture content (MC), solubility, light transmission and transparency of pea protein isolate (PPI) films were investigated. Films plasticized with sorbitol exhibited significantly lower WVP, lower MC and higher solubility, in comparison with glycerol-plasticized films. Increasing glycerol content of the films led to increases in WVP and MC but did not affect film solubility. In contrast, increase in sorbitol content had no effect on permeability and MC but resulted in increased film solubility. Moisture sorption isotherms of PPI films suggested that the difference in WVP observed among films plasticized with glycerol and sorbitol might be due to the different hygroscopicity of these plasticizers. The pH of FFS did not have a significant effect on WVP and MC. Solubility of PPI films formed from non-heated FFS was not affected by pH, whereas solubility of films formed from heat-treated FFS generally increased when pH was increased from 7.0 to 11.0. Heating of FFS resulted in improved film transparency. All tested films were characterized by excellent ability to absorb UV radiation. Microstructural observation by scanning electron microscopy did not show differences between sorbitol- and glycerol-plasticized films.  相似文献   

12.
Edible films were prepared from whey protein isolate (WPI), and characterized in order to select a best combination of protein concentration and glycerol (Gly) ratio. 5%, 7% and 9% (w/v) WPI were used at three WPI:Gly ratios (3.6:1; 3:1; and 2:1). 5% WPI with a 3.6:1 WPI:Gly ratio showed the best combination with factors considered being thickness and water vapor permeability (WVP), while the 9% WPI with 3.6:1 WPI:Gly showed the best result as seen from the oxygen permeability (OP). Further studies were conducted by adding pullulan (PUL) at different WPI:PUL ratios (1:0; 1:1; 2:1; 3:1; 4:1; 5:1; 6:1; 8:1; 10:1) to a selected film in order to investigate the effect of pullulan on thickness, OP, WVP, moisture content (MC), film solubility (FS) and morphology using scanning electron microscopy (SEM). WPI–PUL film had a good appearance and 1:1 WPI:PUL resulted in films with greatest values of OP, WVP, MC, FS, and transmittance. The SEM micrographs showed many pinholes and a favorable structure for the low barrier ability. However, addition of PUL at low concentration was good enough to significantly modify these properties, hence improving the potential characteristics of WPI-based films for food applications.  相似文献   

13.
The structure-function relationship of composite films obtained from soybean-protein isolate (SPI) and cod gelatin was studied. Films with different ratios of SPI:gelatin (0, 25, 50, 75, 100% [w/w]) and plasticized by a mixture of glycerol and sorbitol were prepared by casting. Regardless of the soybean-protein concentration, the thickness and water-vapor permeability of the composite films diminished significantly as compared to pure-gelatin films. The formulation containing 25% SPI: 75% cod-skin gelatin had the maximum force at the breaking point, which was 1.8-fold and 2.8-fold greater than those of 100% gelatin and 100% SPI films, respectively. Moreover, this formulation offered high percent-deformation values lower than those of gelatin but higher than all other films containing SPI-, and the same relatively low water-vapor permeability as the 100% SPI film. While all the films exhibited high water solubility, a slight reduction in film solubility and soluble protein was observed with increasing SPI concentration. Differential-scanning calorimetry analyses revealed that gelatin was completely denatured in all films, while soy proteins largely maintained their native conformation. Analysis by fourier-transform–infrared spectroscopy revealed that the presence of 25% SPI produced gelatin conformational changes, self-aggregation of gelatin chains, and intermolecular associations via CO bonds between gelatin and SPI proteins. All films were translucent in appearance, but the yellowish color increased with increasing proportions of the soybean proteins.  相似文献   

14.
ABSTRACT:  The effects of sucrose on the physical properties and thermal stability of foams prepared from 10% (w/v) protein solutions of whey protein isolate (WPI), egg white protein (EWP), and their combinations (WPI/EWP) were investigated in wet foams and angel food cakes. Incorporation of 12.8 (w/v) sucrose increased EWP foam stability (drainage 1/2 life) but had little effect on the stability of WPI and WPI/EWP foams. Increased stability was not due to viscosity alone. Sucrose increased interfacial elasticity ( E  ') of EWP and decreased E' of WPI and WPI/EWP combinations, suggesting that altered interfacial properties increased stability in EWP foams. Although 25% WPI/75% EWP cakes had similar volumes as EWP cakes, cakes containing WPI had larger air cells. Changes during heating showed that EWP foams had network formation starting at 45 °C, which was not observed in WPI and WPI/EWP foams. Moreover, in batters, which are foams with additional sugar and flour, a stable foam network was observed from 25 to 85 °C for batters made from EWP foams. Batters containing WPI or WPI/EWP mixtures showed signs of destabilization starting at 25 °C. These results show that sucrose greatly improved the stability of wet EWP foams and that EWP foams form network structures that remain stable during heating. In contrast, sucrose had minimal effects on stability of WPI and WPI/EWP wet foams, and batters containing these foams showed destabilization prior to heating. Therefore, destabilization processes occurring in the wet foams and during baking account for differences in angel food cake quality.  相似文献   

15.
Protein aggregation occurs in biological systems and industrial processes, affecting protein solubility and functional properties. In this study, whey protein isolate (WPI) obtained from bovine milk was used as a model to study the dependence of aggregation on pre-heating temperature and on protein and calcium concentrations. WPI solutions (0.1–5.0%, w/v) were heated at 25–85 °C for 30 min prior to cooling and calcium addition. Tryptophan shifted to a more hydrophilic environment as WPI concentrations and pre-heating temperatures increased. Pre-heated WPI solutions yielded soluble particles, which aggregated to form porous gel-like particles by addition of calcium chloride. WPI microgel particles could be prepared by using a cold gelation method and preheated the protein above 65 °C. The particle size was monodisperse with sizes of about 190 nm and 255 nm, respectively in solutions pre-heated to 75 or 85 °C and containing 5 mm calcium.  相似文献   

16.
This study was conducted to determine the effect of both soy protein and glycerol contents on physico-chemical properties of soy protein isolate-based edible (SPI) films. The aim of this study was to better understand the influence of SPI and GLY contents on the behavior of the physico-chemical properties of soy protein isolate-based films. Films were casted from heated (70 °C for 20 min) alkaline (pH 10) aqueous solutions of SPI at 6, 7, 8, and 9 (w/w %), glycerol (50%, w/w, of SPI) and SPI at 7 (w/w %), glycerol (40, 60, 70 %, w/w of SPI). Water vapor permeability (WVP), was measured at 25 °C and for four different relative humidities (30–100%, 30–84%, 30–75%, 30–53%). Surface properties and differential scanning calorimetry were also measured. Varying the proportion of SPI and GLY had an effect on water vapor permeability, wetting and thermal properties of SPI films. A synergistic effect of glycerol and protein was observed on the water vapor permeability. Glycerol and RH gradient strongly enhance the moisture absorption rates and permeability of SPI based films. SPI content weakly increases the WVP and does not modify the surface properties. The temperature of denaturation of soy protein decreases glycerol content except for the higher concentration whereas it increases with protein ratio.Industrial relevanceThis topic of research aims to control mass transfers within composite foods or betweenfoods and surrounding media (for instance the headspace in packagings). The targeted applications from this work deals with the food product coating or the coating of paper-based packaging for limiting both the loss of water and flavors by cheese based products. This will allow to maintain the weight of the cheese during “ripening” and commercialization, and also to prevent (off-) flavour dissemination from very odorant cheese as produced in France and Poland.  相似文献   

17.
In this study, the influence of different concentrations of plasticisers and fatty acids on functional properties of basil seed gum (BSG) films was investigated. The results revealed that glycerol and sorbitol were effective plasticisers for BSG films. Glycerol‐plasticised films exhibited hydrophilic nature with high moisture content (27–49%) and water vapour permeability (4.2–6.5 × 10?11 g Pa?1 m?1 s?1), moisture uptake higher than 100%, solubility ranging 39–50% and moderate mechanical properties. The films containing sorbitol showed lower moisture content, moisture uptake and percentage elongation compared with glycerol‐plasticised samples. Presence of fatty acids promoted an increase in hydrophobicity of samples, characterised by lower moisture uptake, solubility, water vapour permeability and higher contact angles. Among investigated fatty acids, oleic acid efficiency on improving the characteristics of films was higher than saturated fatty acids (palmitic and stearic acid). Concluding, BSG films showed a substantial potential to be incorporated into food packaging applications, especially for those that require less hydrophilic films.  相似文献   

18.
The effects of glycerol, sorbitol, xylitol and fructose plasticisers on water sorption, mechanical properties, water vapour permeability (WVP) and microstructure of pullulan–alginate–carboxymethycellulose (PAC) blend films were investigated. At low plasticiser concentrations (below 7% w/w dry basis), antiplasticisation effect was observed, causing an increase in tensile strength (TS) but a decrease in the equilibrium moisture content. As glycerol concentration increased from 0% to 7%, TS increased from 68.1 to 69.6 MPa, whereas equilibrium moisture contents at 0.84 aw decreased from 0.37 to 0.3 g H2O g?1 dry basis. At higher plasticiser concentrations (14–25% w/w), an opposite trend was observed on the PAC films, resulting in the reduction of TS and elevation of moisture content. Among the four plasticisers tested, the fructose‐plasticised films were the most brittle, showing the highest TS, but had the lowest elongation at break (EAB), WVP and equilibrium moisture content values than films plasticised with other polyols. On the other hand, glycerol resulted in the most flexible film structure, exhibiting opposite materials' properties as compared with the fructose‐plasticised films. For instance, at 25% (w/w) plasticiser concentration, EAB and WVP values of fructose‐plasticised films were 33.5% and 3.48 × 10?6 g m Pa?1 h?1 m?2, which were significantly lower than that of glycerol‐plasticised films (58.6% and 4.86 × 10?6 g m Pa?1 h?1 m?2, respectively). Scanning electron microscopy showed that the plasticised PCA films were less homogeneous and more porous than the unplasticised counterparts, indicating that plasticisers had an effect on the microstructural morphology of the film matrix.  相似文献   

19.
《LWT》2005,38(6):605-610
Sodium caseinate solutions (2.5 g protein/100 g solution) containing glycerol (gly) at gly:protein ratios of 0, 0.08, 0.16, 0.24 or 0.32 w/w were dried over 48 h at 50±5% RH and 23±2 °C to form transparent flexible films of approximately 35 μm thickness. Maximum load, tensile strength and elastic modulus of films decreased and the moisture content increased significantly with increasing glycerol content. Elongation and water vapour permeability of films increased significantly only at gly:protein ratios of 0.24 and 0.32. Wrapping bread samples in the caseinate films reduced hardness during 6 h storage at ambient temperatures relative to unwrapped controls. However, the caseinate films were not as effective in this regard as synthetic polyvinyl chloride film.  相似文献   

20.
A range of films were formed using different proportions of heated (80°C for 30 min) and unheated whey protein isolate (WPI) solutions. The films, with lower proportions of heated WPI solution had lower percentage elongation, tensile strength and Young's modulus, higher solubility and, in general, similar water vapour permeability, compared with a film formed from a heated WPI solution. Hydrophobic interactions and hydrogen bonding dominated in the formation of the films with lower proportions of heated WPI solution, whereas disulphide bonding played a more important role in the formation of films with higher proportions of heated WPI solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号