首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A novel finite element (FE) formulation with adaptive mesh rezoning for large deformation problems is proposed. The proposed method takes the advantage of the selective smoothed FE method (S‐FEM), which has been recently developed as a locking‐free FE formulation with strain smoothing technique. We adopt the selective face‐based smoothed/node‐based smoothed FEM (FS/NS‐FEM‐T4) and edge‐based smoothed/node‐based smoothed FEM (ES/NS‐FEM‐T3) basically but modify them partly so that our method can handle any kind of material constitutive models other than elastic models. We also present an adaptive mesh rezoning method specialized for our S‐FEM formulation with material constitutive models in total form. Because of the modification of the selective S‐FEMs and specialization of adaptive mesh rezoning, our method is locking‐free for severely large deformation problems even with the use of tetrahedral and triangular meshes. The formulation details for static implicit analysis and several examples of analysis of the proposed method are presented in this paper to demonstrate its efficiency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a novel face‐based smoothed finite element method (FS‐FEM) to improve the accuracy of the finite element method (FEM) for three‐dimensional (3D) problems. The FS‐FEM uses 4‐node tetrahedral elements that can be generated automatically for complicated domains. In the FS‐FEM, the system stiffness matrix is computed using strains smoothed over the smoothing domains associated with the faces of the tetrahedral elements. The results demonstrated that the FS‐FEM is significantly more accurate than the FEM using tetrahedral elements for both linear and geometrically non‐linear solid mechanics problems. In addition, a novel domain‐based selective scheme is proposed leading to a combined FS/NS‐FEM model that is immune from volumetric locking and hence works well for nearly incompressible materials. The implementation of the FS‐FEM is straightforward and no penalty parameters or additional degrees of freedom are used. The computational efficiency of the FS‐FEM is found better than that of the FEM. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Eric Li  C.C. Chang  Z.C. He  Zhongpu Zhang  Q. Li 《工程优选》2016,48(12):2064-2089
It is well known that the finite element method (FEM) suffers severely from the volumetric locking problem for incompressible materials in topology optimization owing to its numerical ‘overly stiff’ property. In this article, two typical smoothed FEMs with a certain softened effect, namely the node-based smoothed finite element method (NS-FEM) and the cell-based smoothed finite element method, are formulated to model the compressible and incompressible materials for topology optimization. Numerical examples have demonstrated that the NS-FEM with an ‘overly soft’ property is fairly effective in tackling the volumetric locking problem in topology optimization when both compressible and incompressible materials are involved.  相似文献   

4.
A new smoothed finite element method (S‐FEM) with tetrahedral elements for finite strain analysis of nearly incompressible solids is proposed. The proposed method is basically a combination of the F‐bar method and edge‐based S‐FEM with tetrahedral elements (ES‐FEM‐T4) and is named ‘F‐barES‐FEM‐T4’. F‐barES‐FEM‐T4 inherits the accuracy and shear locking‐free property of ES‐FEM‐T4. At the same time, it also inherits the volumetric locking‐free property of the F‐bar method. The isovolumetric part of the deformation gradient ( F iso) is derived from the F of ES‐FEM‐T4, whereas the volumetric part ( F vol) is derived from the cyclic smoothing of J(=det( F )) between elements and nodes. Some demonstration analyses confirm that F‐barES‐FEM‐T4 with a sufficient number of cyclic smoothings suppresses the pressure oscillation in nearly incompressible materials successfully with no increase in DOF. Moreover, they reveal that our method is capable of relaxing the corner locking issue arising at the corner in the cylinder barreling analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The edge‐based smoothed finite element method (ES‐FEM) was proposed recently in Liu, Nguyen‐Thoi, and Lam to improve the accuracy of the FEM for 2D problems. This method belongs to the wider family of the smoothed FEM for which smoothing cells are defined to perform the numerical integration over the domain. Later, the face‐based smoothed FEM (FS‐FEM) was proposed to generalize the ES‐FEM to 3D problems. According to this method, the smoothing cells are centered along the faces of the tetrahedrons of the mesh. In the present paper, an alternative method for the extension of the ES‐FEM to 3D is investigated. This method is based on an underlying mesh composed of tetrahedrons, and the approximation of the field variables is associated with the tetrahedral elements; however, in contrast to the FS‐FEM, the smoothing cells of the proposed ES‐FEM are centered along the edges of the tetrahedrons of the mesh. From selected numerical benchmark problems, it is observed that the ES‐FEM is characterized by a higher accuracy and improved computational efficiency as compared with linear tetrahedral elements and to the FS‐FEM for a given number of degrees of freedom. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The paper reports a detailed analysis on the numerical dispersion error in solving 2D acoustic problems governed by the Helmholtz equation using the edge‐based smoothed finite element method (ES‐FEM), in comparison with the standard FEM. It is found that the dispersion error of the standard FEM for solving acoustic problems is essentially caused by the ‘overly stiff’ feature of the discrete model. In such an ‘overly stiff’ FEM model, the wave propagates with an artificially higher ‘numerical’ speed, and hence the numerical wave‐number becomes significantly smaller than the actual exact one. Owing to the proper softening effects provided naturally by the edge‐based gradient smoothing operations, the ES‐FEM model, however, behaves much softer than the standard FEM model, leading to the so‐called very ‘close‐to‐exact’ stiffness. Therefore the ES‐FEM can naturally and effectively reduce the dispersion error in the numerical solution in solving acoustic problems. Results of both theoretical and numerical studies will support these important findings. It is shown clearly that the ES‐FEM suits ideally well for solving acoustic problems governed by the Helmholtz equations, because of the crucial effectiveness in reducing the dispersion error in the discrete numerical model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Predicting the frequency response of a complex vibro‐acoustic system becomes extremely difficult in the mid‐frequency regime. In this work, a novel hybrid face‐based smoothed finite element method/statistical energy analysis (FS‐FEM/SEA) method is proposed, aiming to further improve the accuracy of ‘mid‐frequency’ predictions. According to this approach, the whole vibro‐acoustic system is divided into a combination of a plate subsystem with statistical behaviour and an acoustic cavity subsystem with deterministic behaviour. The plate subsystem is treated using the recently developed FS‐FEM, and the cavity subsystem is dealt with using the SEA. These two different types of subsystems can be coupled and interacted through the so‐called diffuse field reciprocity relation. The ensemble average response of the system is calculated, and the uncertainty is confined and treated in the SEA subsystems. The use of FS‐FEM ‘softens’ the well‐known ‘overly stiff’ behaviour in the standard FEM and reduces the inherent numerical dispersion error. The proposed FS‐FEM/SEA approach is verified and its features are examined by various numerical examples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
An assumed‐strain finite element technique for non‐linear finite deformation is presented. The weighted‐residual method enforces weakly the balance equation with the natural boundary condition and also the kinematic equation that links the elementwise and the assumed‐deformation gradient. Assumed gradient operators are derived via nodal integration from the kinematic‐weighted residual. A variety of finite element shapes fits the derived framework: four‐node tetrahedra, eight‐, 27‐, and 64‐node hexahedra are presented here. Since the assumed‐deformation gradients are expressed entirely in terms of the nodal displacements, the degrees of freedom are only the primitive variables (displacements at the nodes). The formulation allows for general anisotropic materials and no volumetric/deviatoric split is required. The consistent tangent operator is inexpensive and symmetric. Furthermore, the material update and the tangent moduli computation are carried out exactly as for classical displacement‐based models; the only deviation is the consistent use of the assumed‐deformation gradient in place of the displacement‐derived deformation gradient. Examples illustrate the performance with respect to the ability of the present technique to resist volumetric locking. A constraint count can partially explain the insensitivity of the resulting finite element models to locking in the incompressible limit. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
In the present contribution we extend a previously proposed so‐called solid–shell concept which incorporates only displacement degrees of freedom to the simulation of large elastic and large elastoplastic deformations of shells. Therefore, the modifications necessary for hyper‐elastic or elastoplastic material laws are discussed. These modifications concern the right Cauchy–Green tensor for large elastic deformations, respectively, the deformation gradient for elastoplasticity which then are consistent to the modified Green–Lagrange strains that are necessary for transverse shear and membrane locking free solid–shell element formulations. However, in addition to the locking mentioned above especially in the range of plasticity incompressibility locking becomes important. Thus, the second major aspect of this contribution is the discussion of several ways to avoid incompressibility locking also including the investigation of eigenmodes. Finally, a selective reduced integration scheme with reduced integration for the volumetric term is employed and described in detail, although it is limited to material laws which allow the decomposition into a volumetric and a deviatoric part. Some numerical examples show the range of application for the proposed elements. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
Node‐based smoothed finite element method (NS‐FEM) using triangular type of elements has been found capable to produce upper bound solutions (to the exact solutions) for force driving static solid mechanics problems due to its monotonic ‘soft’ behavior. This paper aims to formulate an NS‐FEM for lower bounds of the natural frequencies for free vibration problems. To make the NS‐FEM temporally stable, an α‐FEM is devised by combining the compatible and smoothed strain fields in a partition of unity fashion controlled by α∈[0, 1], so that both the properties of stiff FEM and the monotonically soft NS‐FEM models can be properly combined for a desired purpose. For temporally stabilizing NS‐FEM, α is chosen small so that it acts like a ‘regularization parameter’ making the NS‐FEM stable, but still with sufficient softness ensuring lower bounds for natural frequency solution. Our numerical studies demonstrate that (1) using a proper α, the spurious non‐zero energy modes can be removed and the NS‐FEM becomes temporally stable; (2) the stabilized NS‐FEM becomes a general approach for solids to obtain lower bounds to the exact natural frequencies over the whole spectrum; (3) α‐FEM can even be tuned for obtaining nearly exact natural frequencies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Element locking is often seen in homogenized models of elastic fiber‐reinforced materials, and splitting the material compliance into two separate terms isolates troublesome strain modes. Once isolated, the locking modes can be addressed with tailored integration schemes or the opportune introduction of field variables. The canonical application of this approach is seen in the dilatational‐deviatoric split used to treat so‐called ‘volumetric locking’. In the present work, we invoke the spectral decomposition of the material compliance to provide a generalized split. Doing so naturally parses the response into six independent strain modes, with varying propensity for locking. This split can be used to generalize fundamental techniques, such as selective reduced integration and the B‐bar method. This broadened approach works to remedy locking suffered by lower order finite elements used to discretize troublesome materials. Applying these generalized methods to achieve the dilational‐deviatoric split is trivial. However, the compliance spectrum's ability to naturally isolate stiff material response modes makes it a uniquely valuable tool for use on homogenized anisotropic materials. Applying the split, defined by only the first compliance mode, has given rise to the generalized methods, which have proven effective in unlocking finite element models of anisotropic materials. In the present work, the generalization is broadened to treat more than one constrained mode. While treating six modes is equivalent to simple reduced integration techniques, up to five compliance modes are now separated for advantageous treatment. However, some attention must be paid to the stability of the resulting finite element stiffness matrices. We focus here on the treatment of two principal compliance modes. These ‘two‐mode’ applications of the generalized B‐bar method are shown to be a more robust default treatment of linear hexahedral elements than is provided by classical selective reduced integration. This is achieved with a negligible computational overhead. A framework for assessing element stability is delineated, and commonly arising instabilities are analyzed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
提出了一种4节点的三角形单元(T4),并将无网格法的面积权重应变光滑法和光滑有限元法应用于此三角形单元,提出了两种用于解决体积不可压缩线弹性体的算法:基于边的面积权重应变光滑法(T4-EAW)和选择性面积权重应变光滑模型(T4-pEAW/NAW)。数值算例显示,两种计算模型均能较精确地解决体积锁定问题,T4-pEAW/NAW模型可通过面积因子p调节偏斜应变能以达到提高解的准确性的目的。相比于传统采用3节点三角形单元的光滑有限元法,该文所提基于T4单元的两种计算模型均能解决体积锁定引起的棋盘式压力波动。  相似文献   

13.
This paper presents a FEM with mesh‐separation‐based approximation technique that separates a standard element into three geometrically independent elements. A dual mapping scheme is introduced to couple them seamlessly and to derive the element approximation. The novel technique makes it very easy for mesh generation of problems with complex or solution‐dependent, varying geometry. It offers a flexible way to construct displacement approximations and provides a unified framework for the FEM to enjoy some of the key advantages of the Hansbo and Hansbo method, the meshfree methods, the semi‐analytical FEMs, and the smoothed FEM. For problems with evolving discontinuities, the method enables the devising of an efficient crack‐tip adaptive mesh refinement strategy to improve the accuracy of crack‐tip fields. Both the discontinuities due to intra‐element cracking and the incompatibility due to hanging nodes resulted from the element refinement can be treated at the elemental level. The effectiveness and robustness of the present method are benchmarked with several numerical examples. The numerical results also demonstrate that a high precision integral scheme is critical to pass the crack patch test, and it is essential to apply local adaptive mesh refinement for low fracture energy problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
It is well known that the lower bound to exact solutions in linear fracture problems can be easily obtained by the displacement compatible finite element method (FEM) together with the singular crack tip elements. It is, however, much more difficult to obtain the upper bound solutions for these problems. This paper aims to formulate a novel singular node‐based smoothed finite element method (NS‐FEM) to obtain the upper bound solutions for fracture problems. In the present singular NS‐FEM, the calculation of the system stiffness matrix is performed using the strain smoothing technique over the smoothing domains (SDs) associated with nodes, which leads to the line integrations using only the shape function values along the boundaries of the SDs. A five‐node singular crack tip element is used within the framework of NS‐FEM to construct singular shape functions via direct point interpolation with proper order of fractional basis. The mix‐mode stress intensity factors are evaluated using the domain forms of the interaction integrals. The upper bound solutions of the present singular NS‐FEM are demonstrated via benchmark examples for a wide range of material combinations and boundary conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, an approach to the analysis of arbitrary thin to moderately thick plates and shells by the edge-based smoothed finite element method (ES-FEM) is presented. The formulation is based on the first order shear deformation theory, and Discrete Shear Gap (DSG) method is employed to mitigate the shear locking. Triangular meshes are used as they can be generated automatically for complicated geometries. The discretized system equations are obtained using the smoothed Galerkin weak form, and the numerical integration is applied based on the edge-based smoothing domains. The smoothing operation can provide a much needed softening effect to the FEM model to reduce the well-known “overly stiff” behavior caused by the fully compatible implementation of the displacement approach based on the Galerkin weakform, and hence improve significantly the solution accuracy. A number of benchmark problems have been studied and the results confirm that the present method can provide accurate results for both plate and shell using triangular mesh.  相似文献   

16.
In this paper, a novel characteristic–based penalty (CBP) scheme for the finite‐element method (FEM) is proposed to solve 2‐dimensional incompressible laminar flow. This new CBP scheme employs the characteristic‐Galerkin method to stabilize the convective oscillation. To mitigate the incompressible constraint, the selective reduced integration (SRI) and the recently proposed selective node–based smoothed FEM (SNS‐FEM) are used for the 4‐node quadrilateral element (CBP‐Q4SRI) and the 3‐node triangular element (CBP‐T3SNS), respectively. Meanwhile, the reduced integration (RI) for Q4 element (CBP‐Q4RI) and NS‐FEM for T3 element (CBP‐T3NS) with CBP scheme are also investigated. The quasi‐implicit CBP scheme is applied to allow a large time step for sufficient large penalty parameters. Due to the absences of pressure degree of freedoms, the quasi‐implicit CBP‐FEM has higher efficiency than quasi‐implicit CBS‐FEM. In this paper, the CBP‐Q4SRI has been verified and validated with high accuracy, stability, and fast convergence. Unexpectedly, CBP‐Q4RI is of no instability, high accuracy, and even slightly faster convergence than CBP‐Q4SRI. For unstructured T3 elements, CBP‐T3SNS also shows high accuracy and good convergence but with pressure oscillation using a large penalty parameter; CBP‐T3NS produces oscillated wrong velocity and pressure results. In addition, the applicable ranges of penalty parameter for different proposed methods have been investigated.  相似文献   

17.
In this work, a previously proposed Enhanced Assumed Strain (EAS) finite element formulation for thin shells is revised and extended to account for isotropic and anisotropic material non‐linearities. Transverse shear and membrane‐locking patterns are successfully removed from the displacement‐based formulation. The resultant EAS shell finite element does not rely on any other mixed formulation, since the enhanced strain field is designed to fulfil the null transverse shear strain subspace coming from the classical degenerated formulation. At the same time, a minimum number of enhanced variables is achieved, when compared with previous works in the field. Non‐linear effects are treated within a local reference frame affected by the rigid‐body part of the total deformation. Additive and multiplicative update procedures for the finite rotation degrees‐of‐freedom are implemented to correctly reproduce mid‐point configurations along the incremental deformation path, improving the overall convergence rate. The stress and strain tensors update in the local frame, together with an additive treatment of the EAS terms, lead to a straightforward implementation of non‐linear geometric and material relations. Accuracy of the implemented algorithms is shown in isotropic and anisotropic elasto‐plastic problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
In the edge‐based smoothed finite element method (ES‐FEM), one needs only the assumed displacement values (not the derivatives) on the boundary of the edge‐based smoothing domains to compute the stiffness matrix of the system. Adopting this important feature, a five‐node crack‐tip element is employed in this paper to produce a proper stress singularity near the crack tip based on a basic mesh of linear triangular elements that can be generated automatically for problems with complicated geometries. The singular ES‐FEM is then formulated and used to simulate the crack propagation in various settings, using a largely coarse mesh with a few layers of fine mesh near the crack tip. The results demonstrate that the singular ES‐FEM is much more accurate than X‐FEM and the existing FEM. Moreover, the excellent agreement between numerical results and the reference observations shows that the singular ES‐FEM offers an efficient and high‐quality solution for crack propagation problems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A novel method called immersed smoothed FEM using three‐node triangular element is proposed for two‐dimensional fluid–structure interaction (FSI) problems with largely deformable nonlinear solids placed within incompressible viscous fluid. The fluid flows are solved using the semi‐implicit characteristic‐based split method. Smoothed FEMs are employed to calculate the transient responses of solids based on explicit time integration. The fictitious fluid with two assumptions is introduced to achieve the continuous form of the FSI conditions. The discrete formulations to calculate the FSI forces are obtained in terms of the characteristic‐based split scheme, and the algorithm based on a set of fictitious fluid mesh is proposed for evaluating the FSI force exerted on the solid. The accuracy, stability, and convergence properties of immersed smoothed FEM are verified by numerical examples. Investigations on the mesh size ratio indicate that the stability is fairly independent of the wide range of the mesh size ratio. No additional volume correction is required to satisfy the incompressible constraints. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, a class of ‘assumed strain’ mixed finite element methods based on the Hu–Washizu variational principle is presented. Special care is taken to avoid hourglass modes and shear locking as well as volumetric locking. An unified framework for the 4-node quadrilateral solid and thermal as well as thermomechanical coupling elements with uniform reduced integration (URI) and selective numerical integration (SI) schemes is developed. The approach is simply implemented by a small change of the standard technique and is applicable to arbitrary non-linear constitutive laws including isotropic and anisotropic material behaviours. The implementation of the proposed SI elements is straightforward, while the development of the proposed URI elements requires ‘anti-hourglass stresses’ which are evaluated by classical constitutive equations. Several numerical examples are given to demonstrate the performance of the suggested formulation, including static/dynamic mechanical problems, heat conduction and thermomechanical problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号