首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Hybrid composites consisting of boron nitride (BN) platelets and carbon fibers (CF) in a polybutylene terephthalate (PBT) matrix were melt‐compounded, and their thermal and electrical conductivity, tensile, and rheological properties were investigated. While it does not lead to an enhancement in thermal conductivity with respect to PBT/BN composites, the results indicate that a combination of BN and CF in PBT can significantly reduce electrical conductivity of the composites compared to that of PBT/CF composites. The relative low thermal conductivity of the hybrid composites is attributed to CF breakage that occurred during the extrusion and alignment of CF in melt flow direction, which is normal to the heat flow encountered during the thermal conductivity tests induced by injection molding. The hybrid composites were, however, found to have better tensile properties and processibility than PBT/BN composites at the same total filler content. POLYM. COMPOS., 26:66–73, 2005. © 2004 Society of Plastics Engineers  相似文献   

2.
Microsized or nanosized α‐alumina (Al2O3) and boron nitride (BN) were effectively treated by silanes or diisocyanate, and then filled into the epoxy to prepare thermally conductive adhesives. The effects of surface modification and particle size on the performance of thermally conductive epoxy adhesives were investigated. It was revealed that epoxy adhesives filled with nanosized particles performed higher thermal conductivity, electrical insulation, and mechanical strength than those filled with microsized ones. It was also indicated that surface modification of the particles was beneficial for improving thermal conductivity of the epoxy composites, which was due to the decrease of thermal contact resistance of the filler‐matrix through the improvement of the interface between filler and matrix by surface treatment. A synergic effect was found when epoxy adhesives were filled with combination of Al2O3 nanoparticles and microsized BN platelets, that is, the thermal conductivity was higher than that of any sole particles filled epoxy composites at a constant loading content. The heat conductive mechanism was proposed that conductive networks easily formed among nano‐Al2O3 particles and micro‐BN platelets and the thermal resistance decreased due to the contact between the nano‐Al2O3 and BN, which resulted in improving the thermal conductivity. POLYM. ENG. SCI., 50:1809–1819, 2010. © 2010 Society of Plastics Engineers  相似文献   

3.
In this study, we constructed hybrid three-dimensional (3D) filler networks by simply incorporating a relatively low content of one-dimensional carbon nanotubes (CNTs; 0.0005–0.25 vol %) and a certain content of two-dimensional boron nitride (BN; 30 phr) in a silicone rubber (SIR) matrix. As indicated by transmission electron microscopy observation, flexible CNTs can serve as bridges to connect BN platelets in different layers to form hybrid 3D thermally conductive networks; this results in an increase in thermally conductive pathways, and the isolation between CNTs can prevent the formation of electrically conductive networks. Compared to the SIR–BN composite with the same BN content, the SIR–BN–CNT composites exhibited improved thermal conductivity, slightly increased volume resistivity, and comparable breakdown strength without a largely decreased flexibility. When 0.25 vol % CNTs were incorporated, the SIR–BN–CNT composite exhibited 75 and 25% higher thermal conductivities relative to the neat SIR and SIR–BN composite with 30 phr BN, respectively, and a thermal conductivity that was even comparable to SIR–BN composite with 40 phr BN. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46929.  相似文献   

4.
Within the scope of this research, platelet‐shaped hexagonal Boron Nitride (h‐BN) with a size of 2 and 12 μm, and oval‐shaped Boehmite (BT) with a size of 2 μm were incorporated in a glass fiber‐reinforced epoxy novolac matrix cured with a diamine‐based hardener. The effects of the platelet size (BN 2 and 12 μm) and filler nature (BT vs. BN) were correlated with the final thermal and fire‐related properties. The incorporation of the fillers shows that not only the thermal conductivity (σ) was increased from approximately 0.2 up to 1.04 W/mK (through‐plane) but also the flame retardancy was improved by using a hybrid combination. The time to ignition (tig) was increased by 48 s and the FIGRA value was decreased from 6.5 to 3.3 indicating a much lower fire hazard for the material. scanning electron microscopic micrographs of the laminate cross sections show that the fillers are distributed and oriented randomly in the fiber‐reinforced matrix, and also highlight the fiber wetting. Furthermore, the results show that the resulting 3D filler network and infiltration of the intratow regions is strongly dependent on lateral filler size and filler combination. With increasing the filler aspect ratio, the effect on thermal properties and filtration is more evident. Moreover, the hybrid combination of BN and Boehmite fillers has a strong effect on the network formation during processing, resulting in enhanced thermal and mechanical properties. A synergy was observed when using BN 12 μm in combination with Boehmite 2 μm as the larger platelets tend to assemble themselves in the intertow region (resin‐rich region) and the smaller particles infiltrate into the intratow regions. This leads to a formation of a thermal pathway throughout the glass fabric barrier. Considering the cost factor, the through‐plane (z‐direction) heat dissipation and the flame retardancy can be tailored by optimizing the size, aspect ratio/geometry, and nature of the fillers. POLYM. ENG. SCI., 59:1840–1852, 2019. © 2019 The Authors. Polymer Engineering & Science published by Wiley Periodicals, Inc. on behalf of Society of Plastics Engineers.  相似文献   

5.
An internal mixer was used to prepare polycarbonate (PC)‐based nanocomposites containing carbon fibers, carbon nanofibers (CNF), and mixtures of the two fillers. The influence of the filler volume fraction, the relative amounts of the two fillers, and the filler orientation relative to the direction of heat flow on the thermal conductivity was examined. Filler orientation was obtained by the extrusion of strands of the nanocomposite. The thermal conductivity was measured using a steady‐state heat conduction technique. The CNF were fragile, and their aspect ratio could be decreased during processing. In general, the composite thermal conductivity increased with increasing filler content. Fiber alignment in the heat flux direction resulted in a significant increase in thermal conductivity. Mixing of nanofibers with microfibers resulted contacts between the microfibers. This, together with fiber alignment provided large increases in the thermal conductivity. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

6.
马腾飞  王宽  杨洋  王硕  卢咏来 《橡胶工业》2018,65(2):173-177
研究氮化硼表面改性及其对氮化硼/硅橡胶复合材料热性能的影响。结果表明:活化可以提高氮化硼表面接枝率,偶联剂CA1对氮化硼的改性效果优于偶联剂KH570;随着氮化硼用量的增大,氮化硼/硅橡胶复合材料的热导率增大;加入氮化硼的复合材料热稳定性提高,但改性氮化硼/硅橡胶复合材料的热稳定性下降。  相似文献   

7.
One of disadvantages of polymer composites is poor electrical and thermal conductivity. As a first step in this direction, graphene‐modified polypropylene polymer is being developed to improve its electrical and thermal conductivity. Two techniques were investigated: surface coating and extrusion. In the case of coating technique, the percolation threshold was found to be 0.5 wt % of graphene and electrical conductivity of polypropylene increased around 13 log cycles. Coating technique breaks the agglomerations due to magnetic stirring followed by sonication and gives homogeneous graphene‐coated polypropylene pellets. When polymer melts under compression molding, the graphene platelets network formed on the surface of polypropylene pellets as well as through‐the‐thickness of the molded disk, which provide continuous network of graphene. However, in extrusion technique, graphene segregated and did not disperse properly in polypropylene. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45833.  相似文献   

8.
《Ceramics International》2020,46(13):20810-20818
Herein, oriented boron nitride (BN)/alumina (Al2O3)/polydimethylsiloxane (PDMS) composites were obtained by filler orientation due to the shear-inducing effect via 3-D printing. The oriented BN platelets acted as a rapid highway for heat transfer in the matrix and resulted in a significant increase in the thermal conductivity along the orientation direction. Extra addition of spherical Al2O3 enhanced the fillers networks and resulted in the dramatic growth of slurry viscosity. This, together with filler orientation induced the synergism and provided large increases in the thermal conductivity. A high orientation degree of 90.65% and in-plane thermal conductivity of 3.64 W/(m∙K) were realized in the composites with oriented 35 wt% BN and 30 wt% Al2O3 hybrid fillers. We attributed the influence of filler orientation and hybrid fillers on the thermal conductivity to the decrease of thermal interface resistance of composites and proposed possible theoretical models for the thermal conductivity enhancement mechanisms.  相似文献   

9.
Various aspects of electrical and thermophysical properties of nanocomposites based on low‐density polyethylene matrix filled with nanostructuralized expanded graphite (EG) and standard, microsized graphite are presented in this article. A periodical method developed in the laboratory was used to measure simultaneously thermal conductivity, specific heat, and diffusivity of composites at room temperature. The effect of micro‐ and nanosized fillers on the final thermophysical and electrical behavior is investigated. It was found that the electrical conductivity of composites strongly depends not only on the filler content but also on the filler size. When the microsized graphite was used, the percolation concentration of the filler was found to be 15 vol%, whereas the percolation concentration of the filler in nanocomposites filled with EG of large sizes was significantly lower. Similarly, it was shown that the graphite significantly improves the thermophysical behavior of composites filled with micro‐ and nanofiller sizes. The thermal conductivity measured values were also compared with some theoretical models for the prediction of the thermal conductivity. POLYM. COMPOS., 2012. © 2013 Society of Plastics Engineers  相似文献   

10.
The electrical conductivity of polymeric materials can be increased by the addition of carbon fillers. The resulting composites can be used in applications such as electrostatic dissipation and interference shielding. Electrical conductivity models are often proposed to predict the conductivity behavior of these materials. The electrical conductivity of carbon‐filled polymers was studied here by the addition of three single fillers to nylon 6,6 and polycarbonate in increasing concentrations. The fillers used in this project were carbon black, synthetic‐graphite particles, and milled pitch‐based carbon fibers. Materials were extruded and injection‐molded into test specimens, and then the electrical conductivity was measured. Additional material characterization tests included optical microscopy for determining the filler aspect ratio and orientation. The filler and matrix surface energies were also determined. An updated model developed by Mamunya and others and a new additive model (including the constituent conductivities, filler volume fraction, percolation threshold, constituent surface energies, filler aspect ratio, and filler orientation) fit the electrical conductivity results well. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2280–2299, 2003  相似文献   

11.
The concentration dependence of specific heat, electrical and thermal conductivities of nanocomposites based on high‐density polyethylene (HDPE) filled with silver nanoparticles have been investigated. The composites filled with high filler content show high electrical and thermal conductivities. The dielectric relaxation spectroscopy was used to investigate the electrical properties in the studied systems. The scaling law of electrical percolation was used for an exact estimation of the percolation threshold (Pc). A low electrical percolation threshold was found in the investigated composites. The rule of mixture was sufficient for the prediction of the specific heat dependence of HDPE–Ag nanocomposites as a function of the weight filler content. The basic models of the thermal conductivity have a tendency to underestimate the measured values for the low and high filler concentrations. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

12.
A new thermally conductive photoresist was developed. It was based on a dispersion of boron nitride (BN) nanoflakes in a negative‐tone photosensitive polyimide (PSPI) precursor. 3‐Mercaptopropionic acid was used as the surfactant to modify the BN nanoflake surface for the dispersion of BN nanoflakes in the polymer. The thermal conductivity of the composite films increased with increasing BN fraction. The thermal conductivity of the PSPI/BN nanocomposite was up to 0.47 W m−1 K−1 for a mixture containing 30 wt % nanosized BN filler in the polyimide matrix. Patterns with a resolution of 30 μm were obtained from the PSPI/BN nanocomposites. The PSPI/BN nanocomposites had excellent thermal properties. Their glass‐transition temperatures were above 360°C, and the thermal decomposition temperatures were over 460°C. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Boron nitride (BN) particles fabricated with different surface treatments were used to prepare thermally conductive polymer composites by epoxy wetting. The polar functionality present on the BN particles allowed the permeation of the epoxy resin because of a secondary interaction, which allowed the fabrication of a composite containing high filler concentration. The different cohesive energy densities of the synthesized material due to a functional-group-induced surface treatment effect on surface free energy and wettability determined the thermal and mechanical properties of the polymer. The results indicate that surface-curing agents interrupt the interaction between the filler and matrix, and do not always enhance thermal conductivity. Moreover, the composites showed maximum thermal conductivity at 30 wt% epoxy loading when the fixed-pore volume fraction reached in the filtrated BN film. The measured storage modulus was also enhanced by surface treatment because of the sufficient interface produced and interaction between the large amount of the filler and epoxy.  相似文献   

14.
Conductive fillers are often added to thermoplastic polymers to increase the resulting composite's electrical conductivity (EC) which would enable them to be used in electrostatic dissipative and semiconductive applications. The resulting composite also exhibits increased tensile modulus. The filler aspect ratio plays an important role in modeling composite EC, and tensile modulus. It is difficult to measure the filler aspect ratio after the manufacturing process (often extrusion followed by injection molding) in the composite, especially when nanomaterials are used. The EC percolation threshold is a function of the filler aspect ratio; hence, knowledge of this percolation threshold provides a means to extract the filler aspect ratio. In this study, the percolation threshold of the composite was determined from EC measurements and modeling, which in turn was used to determine the filler aspect ratio for tensile modulus modeling. Per the authors' knowledge, this approach has not been previously reported in the open literature. The fillers; carbon black (CB: 2–10 wt %), multiwalled carbon nanotubes (CNT: 0.5–8 wt %), or exfoliated graphite nanoplatelets (GNP: 2–12 wt %); were added to polycarbonate (PC) and the resulting composites were tested for EC and tensile modulus. With the filler aspect ratio determined from EC values for CNT/PC and GNP/PC composites, the three‐dimensional randomly oriented fiber Halpin‐Tsai model accurately estimates the tensile modulus for the CNT/PC composites and the Nielsen model predicts the tensile modulus well for the CB/PC and GNP/PC composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
A Monte Carlo simulation method was developed in the open source programing language Python to predict the conductive filler concentration at the percolation threshold and the electrical conductivity for different filler concentrations in electrically conductive composites (ECCs) with fiber‐like conductive fillers. The computer method was programmed to consider the aspect ratio distribution of the fibers or a single average aspect ratio for the determination of the percolation threshold. The results for the two cases were compared to values reported in the literature for liquid crystal polymers (LCP) with synthetic graphite (SG) and to results obtained experimentally for polyvinylidene fluoride (PVDF) with polypyrrole (PPy)‐coated amorphous silica fibers (ASF). Additionally, a contact resistance based on the tunneling effects principle was used to predict the electrical conductivity, and the results of the simulations were compared to the experimental data for the same ECCS. It was found that the percolation thresholds predicted through the simulations considering the aspect ratio distribution were within the concentration limits associated with the transition from electrical insulation to conductivity, while the electrical conductivity predictions had similar behavior to the experimental data, although the values were of different magnitudes. POLYM. COMPOS., 61–69, 2016. © 2014 Society of Plastics Engineers  相似文献   

16.
以聚丁烯-1(PB-1)为基体,二维片状氮化硼(BN)为导热填料,采用模压成型的方法制备了PB-1/BN导热复合材料。研究了BN用量对PB-1/BN导热复合材料导热性能、力学性能、流变性能以及结晶性能的影响。结果表明:BN的加入使复合材料的导热性能明显提高,当BN用量为50%时,复合材料的导热系数达到1.28 W/(m·K),与纯PB-1相比提高了266%;随着BN用量的增加,复合材料的力学性能明显下降;同时,其结晶温度和结晶度也有不同程度降低。  相似文献   

17.
This study presents an investigation of the electrical and thermal conductivities of composites based on an ethylene vinyl acetate (EVA) copolymer matrix and nanostructured expanded graphite (EG). To improve the EG dispersion in EVA, EG sheets were modified by treating them with the anionic surfactant sodium dodecyl sulphate (SDS) in water. The modified SDS‐EG platelets, after being filtered and dried, were melt‐mixed with EVA to prepare the composites. Finally, both EVA/EG and EVA/SDS‐EG composites were subjected to 50 kGy electron beam (EB) irradiation. SEM images confirm that the irradiated EVA/EG samples had improved interfacial adhesion, while the irradiated EVA/SDS‐EG samples showed even better interfacial adhesion. The gel contents of the irradiated samples without and with SDS treatment increased with increase in EG loading. The EVA/EG composites exhibited a sharp transition from an insulator to a conductor at an electrical percolation threshold of 8 wt %, but with SDS‐EG the electrical conductivity was extremely low, showing no percolation up to 10 wt % of filler. The EB irradiation had no influence on electrical conductivity. The thermal conductivity linearly increased with EG content, and this increase was more pronounced in the case of SDS‐EG, but decreased after EB irradiation. The thermal properties were little influenced by EB irradiation, while better polymer–filler interaction and better filler dispersion as a result of SDS treatment, and the EB irradiation initiated formation of a cross‐linked network, had a positive effect on the tensile properties. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42396.  相似文献   

18.
This paper reports results on experimental investigation of the conductivity behavior of carbon fiber filled polymer composites at the percolation threshold. Two types of carbon fiber‐epoxy matrix composites have been studied and comparison of the measured data has been made. These two types of composites differ in the surface modification of carbon fibers (in one case the surface of carbon fibers is covered with polymer beads using the microencapsulation technology, in the other their surface stayed unmodified). Experimental data reveal that surface modification of carbon fibers influences greatly the DC conductivity (percolation threshold moves to higher concentrations) but does not influence the AC electrical properties. From the frequency dependence of conductivity upon fiber concentration it becomes clear that it is not possible to predict the high frequency conductivity (electromagnetic interference shielding properties) based on the DC conductivity. Percolation behavior of conductivity as a function of conductive filler concentration is typical only for DC or low frequency AC conductivity. The percolation threshold gradually vanishes for high frequencies of electromagnetic field. The temperature dependence of electrical properties has also been studied. Composites with concentration near the percolation threshold show the switch‐off effect (at the specific temperature the DC conductivity drops by several orders of magnitude). This switch‐off effect does not occur for high frequency AC conductivity.  相似文献   

19.
以聚酰胺6(PA6)为基体, 氮化硼(BN)作为导热填料,经双螺杆挤出机熔融共混,模压成型制得导热绝缘复合材料。研究了BN含量、粒径、形状和不同BN粒径复配对复合材料导热性能的影响,并研究了BN含量和粒径对复合材料绝缘性能的影响。结果表明,在各种粒径下,复合材料热导率均随BN填充量的增加而增大;在BN粒径为5 μm、填充量为25 %(体积分数,下同)时,复合材料热导率达到1.2187 W/(m·K);在BN填充量相同时,填料粒径对复合材料热导率的影响不是简单的单调规律,呈现50、100 μm时较小,1、5、15 μm时较大,150 μm时最大的规律;片状BN填料比球状BN填料更有利于提高复合材料的热导率;2种不同粒径填料复配所填充的复合材料的热导率大于单一粒径填充的复合材料;5 μm与150 μm粒径BN复配,在填充量为20 %,配比为1:3时,复合材料的热导率最大,达到1.3753 W/(m·K),为纯PA6的4.9倍;在不同BN含量和粒径下,复合材料体积电阻率均能达到10000000000000 Ω·cm以上,满足绝缘性能。  相似文献   

20.
UHMWPE/LLDPE/BN复合塑料导热性能研究   总被引:1,自引:0,他引:1  
将氮化硼(BN)粒子和超高分子量聚乙烯/线性低密度聚乙烯(UHMWPE/LLDPE)分别用熔融辊炼法和粉末混合法制备导热聚乙烯塑料。研究了制备方式、填料含量及偶联剂对填料分散状态及体系热导率、热阻的影响。研究结果表明,粉末法制备的塑料由于BN的高分散效果使得体系的导热性能明显高于熔融辊炼法制备的体系,热导率随填料含量而增加,偶联剂处理有利于提高塑料的热导率。在UHMWPE/LLDPE/BN中添加少量氧化铝短纤维有助于提高体系的力学强度、韧性及热导率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号