首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The pervaporation dehydration of water-ethanol mixtures was investigated using the mixed matrix (MM) membranes prepared from natural rubber (NR) and crosslinked poly(vinyl alcohol) (PVA) semi-IPN embedded with the zeolite 4A. With the presence of NR as well as zeolite, the swelling of MM membranes in water was effectively suppressed. Examined by DSC, the non-freezing bound water in the MM membranes was found decreasing with more zeolite loading because the water-polymer interaction is diminishing. The sorption study of MM membranes revealed a preferential sorption to water with improved water sorption selectivity as increasing the zeolite loading. For pervaporation at 5 vol% water in feed, the reversed trade-off with respect to the zeolite loading was encountered such that the total permeation flux increased along with an enhancement of the water separation factor. For higher feed water concentration, despite the greater total permeation flux, the separation factor was reduced owing to the extensive swelling of the polymer matrix. The temperature dependency of the partial water and ethanol fluxes followed the Arrhenius relationship and the estimated activation energies for water flux were lower than those of the ethanol flux, suggesting that the developed MM membranes are highly water selective.  相似文献   

2.
We successfully developed zeolite membranes with hydrophilic character, by choosing appropriate zeolites in terms of hydrophilicity and high acid tolerance. We evaluated thus developed membranes by their pervaporation (PV) performance, dehydration from acidic organic solvent. The zeolite membranes we developed, based on merlinoite (MER), chabazite (CHA) or phillipsite (PHI), are shown to exhibit stable dehydration performance, respectively. We successfully applied the membranes to the selective removal of water in an ester condensation reaction starting from a stoichiometric mixture of a carboxylic acid and an alcohol. The availability of pervaporation-assisted ester condensation reaction was validated by various kinds of combinations of carboxylic acid and alcohols, which implies the general availability of pervaporation-assisted process intensification by zeolite membranes. This paper was presented at the 11th Korea-Japan Symposium on Catatysis held at Seoul, Korea, May 21–24, 2007.  相似文献   

3.
E. Korngold 《Desalination》1974,14(3):359-367
The behaviour of low permselectivity anionic membranes in pilot plant operation was studied by substituting such membranes for the conventional anionic ones used in electrodialysis. The product flow rate or electrical current is limited in electrodialysis because of scaling and fouling problems associated with the anionic membrane. Higher electrical currents and flow rates were achieved with the new anionic membranes (Neginst-P.E.N. developed in our laboratories) without the associated effects of fouling and scaling. While these anionic membranes require more electrical power per unit of desalinized water than electrodialysis, the additional electrical costs are more than offset by operation at higher current densities.  相似文献   

4.
Within the framework of the MABMEM research project, new high‐performance membranes are being developed for sustainable water management. The performance of the membranes will be evaluated in comparative and standardized fouling tests as well as in terms of the removal of trace impurities on a laboratory scale. Seven candidates are currently being tested in demonstrator trials with real‐water matrix in a waterworks for the direct treatment of dam water without prior coagulation over a period of 6 months. Subsequently, the new membrane materials will be operated with the effluent of a wastewater treatment plant.  相似文献   

5.
Among several oil/water emulsion separation technologies, the utilization of nanoparticle-decorated membranes with diverse functionalities has received considerable attention in recent years, particularly if the antifouling capacity can be improved. In this article, we propose a new membrane based on surface-hydrolyzed polyacrylonitrile electrospun membranes and/or decorated with amine-functionalized Si-MCM-41 nanoparticles to be used as oil/water emulsion separation treatment and to determine their antifouling ability. X-Ray photoelectron spectrometry, attenuated total reflectance Fourier transform infrared spectroscopy, and toluidine blue O assay, scanning electron microscopy, contact angle measurements for oil under water and thermogravimetry were used for characterizing the membranes and an assay of permeability was developed to quantify the diffusion of oil molecules across the electrospun membrane. The electrospun and/or decorated membranes showed an underwater oleophobic wettability, which can separate oil-in-water emulsions with 87% separation efficiency, results of fouling experiments, evaluated in terms of rejection and flux recovery ratio, exhibited good antifouling ability, but the membrane decoration process did not lead to superior outcomes compared with undecorated membranes.  相似文献   

6.
Semipermeable membranes are the core elements for membrane water desalination technologies such as commercial reverse osmosis (RO) process and emerging forward osmosis (FO) process. Structural and chemical properties of the semipermeable membranes determine water flux, salt rejection, fouling resistance, and chemical stability, which greatly impact energy consumption and costs in osmosis separation processes. In recent years, significant progress has been made in the development of high-performance polymer and polymer composite membranes for desalination applications. This paper reviews recent advances in different polymer-based RO and FO desalination membranes in terms of materials and strategies developed for improving properties and performances.  相似文献   

7.
With a solution technique, NaY zeolite incorporated, tetraethylorthosilicate‐crosslinked poly(vinyl alcohol) membranes were prepared. The resulting membranes were tested for their ability to separate isopropyl alcohol/water mixtures by pervaporation in the temperature range of 30–50°C. The effects of the zeolite content and feed composition on the pervaporation performance of the membranes were investigated. The experimental results demonstrated that both flux and selectivity increased simultaneously with increasing zeolite content in the membranes. This was explained on the basis of the enhancement of hydrophilicity, selective adsorption, and establishment of a molecular sieving action attributed to the creation of pores in the membrane matrix. The membrane containing 15 mass % zeolite exhibited the highest separation selectivity of 3991 with a flux of 5.39 × 10?2 kg/m2 h with 10 mass % water in the feed at 30°C. The total flux and flux of water were close to each other for almost all the studied membranes, and this suggested that the membranes could be used effectively to break the azeotropic point of water/isopropyl alcohol mixtures to remove a small amount of water from isopropyl alcohol. From the temperature‐dependent diffusion and permeation values, the Arrhenius activation parameters were estimated. The activation energy values obtained for water were significantly lower than those for isopropyl alcohol, and this suggested that the developed membranes had a higher separation efficiency for water/isopropyl alcohol systems. The activation energy values for total permeation and water permeation were found to be almost the same for all the membranes, and this signified that coupled transport was minimal because of the highly selective nature of the membranes. Positive heat of sorption values were observed in all the membranes, and this suggested that Henry's mode of sorption was predominant. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
A new thermodynamic model is developed for water and solute transports through reverse osmosis membranes. The model is featured with rigorous derivations in theoretical development and clearly defined parameters for membrane transport properties. The new model can correctly describe not only the dependence of salt rejection on pressure and salt concentration, but also the non-linearity between water flux and pressure. Comparisons of model simulations with the reported reverse osmosis experiments demonstrate that the parameters in the new model are concentration-independent. This study shows that water and salt transports through reverse osmosis membranes can be satisfactorily described with irreversible thermodynamics.  相似文献   

9.
Macroporous or mesoporous hydrophobic inorganic membranes are prepared by a simple one-pot synthesis method coupling the sol–gel process with fluorinated silanes as precursors and the use of alumina powders as fillers. The porosity of these intrinsically hydrophobic membranes can be tuned by the particle size distribution of the dispersed alumina powder. These membranes developed for water/gas separation applications are characterized in term of gas permeance and water breakthrough pressure. A value of air permeance equal to 1800 L min−1 bar−1 m−2 associated with a water breakthrough pressure larger than 10 bar are measured for the effective sample.  相似文献   

10.
In the present study, an in situ approach to pH and temperature responsive membranes is developed. The membrane matrix is formed through bulk polymerization and crosslinking of liquid monomer 2-hydroxyethyl methacrylate (HEMA) while the membrane pores are formed by the templating of inorganic particles. The functional monomers methacrylic acid (MAA) and N-isopropylacrylamide (NIPAAm) are incorporated into membrane casting solution in order to confer membranes with pH and temperature responsive properties. The poly(HEMA/MAA) membranes exhibit a reversible pH-dependent water flux, while the poly(HEMA/NIPAAm) membranes exhibit a reversible temperature-dependent water flux. The flux of the poly(HEMA/MAA) membrane increased by 70% when pH was decreased from 10.0 to 2.0, while the flux poly(HEMA/NIPAAm) membrane increased by 150% when temperature was increased from 20 to 45 °C. The protein adsorption and antifouling performance of the poly(HEMA/MAA) and poly(HEMA/NIPAAm) membranes also exhibit pH and temperature responsive properties.  相似文献   

11.
Graphene oxide (GO) membranes have shown great potential for water purification, but their permeability and antipressure ability are poor, which limits their practical applications. In this study, two-dimensional graphitic carbon nitride (g-C3N4) nanosheet-intercalated GO (GOCN) membranes were developed to improve the separation performance of GO membranes, especially under high operating pressure. After incorporation of the g-C3N4 nanosheets, the amount of permeable nanochannels (wrinkles or corrugation) in the membrane increased; hence, the water permeance was effectively improved (twice as high as that of GO membranes). Moreover, the antipressure performance of the GOCN membranes was significantly enhanced (even below 0.5 MPa pressure) as the nanochannels in the composite membranes become stable and rigid due to the support of the pressure-resistant g-C3N4 nanosheets. The good separation performance demonstrates that the intercalation of g-C3N4 is an effective strategy to improve the GO-based membrane properties, which can promote their application in water purification.  相似文献   

12.
With its ability to purify water and treat wastewater, photocatalytic membranes have become a promising solution. The membrane's unique properties allow for the separation of solid compounds and the degradation of organic materials through photocatalytic and antibacterial means. Poly(vinylidene fluoride)/titanium oxide (PVDF/TiO2) composite remain the materials of choice for making these membranes due to their economy, effectiveness, safety, and durability. In this work a photocatalytic membrane reactor (PMR) system was developed using PVDF/TiO2 membranes fabricated by the solution blow spinning (SBS) process. Obtaining photocatalytic membranes using this method is an efficient and ecological route that overcomes the disadvantage of separating the photocatalyst after the treatment is complete. The results of PMR system showed that the PVDF/TiO2 membrane could effectively remove total coliforms and E. coli from polluted water. After 10 min of contaminated water circulation through the PMR system, the presence of pathogens was not detected, indicating the efficiency of the obtained membranes.  相似文献   

13.
A new class of desalination membranes has been developed. The membranes were prepared by polymerizing mixtures of two hydrophilic monomers (N-methyloacrylamide and acrylic acid), a hydrophobic monomer (ethyl acrylate) and a hydrophobic crosslinking monomer (trimethylol propane trimethacrylate) followed by heat treatment. The membranes were homogeneous, averaging about 6 mils in thickness. They were characterized by measuring water contents and salt distribution coefficients using an immersion technique. The fractional water contents in the membranes varied between 0.16 and 0.44 as the molal salt distribution coefficients increased from ca. 0.22 to 0.43. Increasing contents of the hydrophobic monomer and/or crosslinking monomer led to decreased water and salt contents, as expected. A model is postulated in which the water is assumed to be distributed within the polymer in two forms: (1) as primary water, hydrogen-bonded with hydrophilic polymer groups, and (2) secondary water, imbibed with salt from the external solution into hydrophilic regions or defects within the polymer matrix. It was found that primary water content was approximately constant for all compositions and varied between ca. 2–3 moles of primary water/mole of hydrophilic monomer in the membrane.  相似文献   

14.
Highly porous macrovoid‐free polyethersulfone membranes have been prepared using the phase‐inversion process with water as the non‐solvent. These membranes are of great interest for membrane distillation (MD) after application of a hydrophobic/oleophobic coating. The membrane structure was controlled by optimizing the process conditions and dope composition. Counter intuitively, increasing the polymer concentration favors the formation of larger surface pores under similar process conditions. A symmetric membrane is obtained when a sufficient amount of high‐molecular‐weight polyvinylpyrrolidone was added to the dope solution, which appears to play an important role in the structure formation process. The final membrane shows similar performance compared to commercial MD membranes. However, the membranes developed in this study show an oleophobic character, broadening the applications of MD. Moreover, the compressibility of these membranes is severely reduced compared to stretched membranes, which is expected to result in an improved MD performance at full scale. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45516.  相似文献   

15.
Thin-film composite (TFC) membranes are commendable semipermeable barriers for water treatment. Although conventionally immiscible interfaces between aqueous and organic solutions are widely utilized for obtaining TFC membranes, interfacial polymerization still suffers from the issues of harmful solvents, complex diffusion/reaction of the reactants, and thermodynamic and kinetic instability of interfaces. In this study, vapor-phase polymerization with no requirements for organic solvent and immiscible interface is utilized for processing TFC nanofiltration membranes. Through cross-linking of β-cyclodextrin and piperazine layers by trimesoyl chloride vapor, polyester and polyamide TFC membranes with high cross-linking degree are simply prepared in a scalable and reproducible manner. The prepared TFC membranes exhibit stable nanofiltration and desalination performance for all water, organic solvent, and water–organic mixture systems, with permeance up to an order of magnitude higher than that of commercial membranes.  相似文献   

16.
In the present study, a novel poly(vinyl alcohol) membrane system was developed by a systematic approach for the pervaporation separation of water–isopropanol azeotropic mixtures. Poly(vinyl alcohol) with 5 vol% cross-linked membranes showed water permeance of 4166 gpu with intrinsic selectivity 47. To further enhance the separation efficiency a hydrophilic nanofiller, bentonite nanoclay, is reinforced with cross-linked poly(vinyl alcohol) (5 vol% glutraldehyde) membranes. The water permeance of the membranes increased to 8232 gpu, which is 100% more than that of cross-linked membranes. Membrane selectivity and the overall pervaporation performance also showed about 63 and 157% increment, respectively.  相似文献   

17.
Different parameters of casting solutions and casting conditions were studied for the development of cellulose acetate benzoate flat osmotic membranes. Casting solutions were prepared with different concentrations of the polymer, the additive, and the solvent; viscosity of the casting solution; and the thickness of the membrane developed. The membranes were given different evaporation periods and annealing temperatures under different RH. Different annealing baths were also used. Based on these, conditions were optimized for the development of cellulose acetate benzoate flat osmotic membranes. These membranes were characterized with respect to bound water content, specific water content, transport properties by direct osmosis, salt intake by direct immersion, water permeability coefficient of the dense membrane, diffusion coefficient, salt permeability, and salt distribution by electrical conductivity. Also, cellulose acetate benzoate membranes were compared with conventionally used cellulose acetate membranes. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
The separation of water from diesel fuel is very important for safety, ecological, and economic reasons, as otherwise it can lead to lower combustion efficiency and engine problems. In addition, the free water from ultra‐low‐sulfur diesel (ULSD) can only be insufficiently separated with the classic separation systems. To solve this problem, a membrane process with different organic/inorganic membranes for the selective separation of water droplets from ULSD and an innovative water‐in‐oil online sensor were developed.  相似文献   

19.
反渗透具有低能耗、高效率等突出优点,是目前应用最为广泛的分离技术之一。反渗透膜的性能是影响反渗透过程效率的决定因素,反渗透膜的研制一直是国内外膜领域的研究热点。特别是近年来,石墨烯、碳纳米管等新型材料展现出优异的水传递行为,成为新型反渗透膜材料的研究热点。本论文回顾了反渗透膜的研制发展历程,介绍了不同单体通过界面聚合反应成膜的研究进展,综述了国内外新型混合基质膜和无机分子筛反渗透膜材料及其成膜研究,最后提出了新型反渗透膜的研究方向。  相似文献   

20.
In this research, a novel type of waterborne fluorescent nanofiber membranes (WNFM) based on fluorescent acrylic latex (FAL) has been developed by electrospinning method using environment-friendly water as the spinning solvent. FALs are synthesized by doping Rhodamine B (Rh B) into acrylate monomers through emulsion polymerization, and then polyvinyl alcohol (PVA) is added to fabricate a series of WNFM via electrospinning process. As the hydrophilic emulsifier sodium dodecyl sulfate enriches on the surface of the latex, a portion of Rh B can be adsorbed onto the surface of FAL and form an electrical double layer to prevent its aggregation, which accounts for the enhancement in fluorescence of FALs. The relationships between the preparation conditions, morphology and properties of WNFM have been studied with a combination of techniques including fluorometry and microscopies. The developed waterborne fluorescent nanofiber membranes demonstrate a good water-resistant property with a linear response of photoluminescence intensity to temperature for many cycles. The study points a new direction to develop the nanofiber membrane using environment-friendly water as a spinning solvent in electrospinning and realize its fluorescent functionalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号