首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Activated carbon injection is considered one of the most cost-effective options for mercury control at PRB-fired power plants. However, roughly 30% of sites firing PRB coal use SO3 for flue gas conditioning. The presence of SO3 in flue gas can decrease mercury capture by activated carbon, sometimes dramatically. Overcoming activated carbon performance limitations caused by SO3 conditioning for units with this configuration is essential to enable these plants to cost-effectively meet pending mercury emission regulations. Ameren's Labadie Unit 2 fires PRB coal and uses SO3 to enhance particulate capture in the electrostatic precipitator (ESP). Full-scale sorbent injection tests at Labadie were conducted from 2005–2007. Six sorbents were tested at SO3 injection concentrations ranging from 0 to 10.7 ppm. Sorbent performance was evaluated at two injection locations (the air preheater (APH) inlet and outlet). Native mercury capture on fly ash was typically less than 15%. When the mercury sorbents were injected downstream of the air preheater, the SO3 concentration resulted in a decrease in mercury capture from 85% (no SO3 injection) to 17% (SO3 injection set at 10.7 ppm). Mercury sorbents were more effective when injected upstream of the air preheater. With the SO3 system off, mercury removal increased from 75% when injecting 5.1 lb/MMacf of brominated carbon at the APH outlet, compared to 95% when injecting at the inlet. With the SO3 system on, test results indicated an increase from about 30% injecting at the outlet to 58% injecting at the inlet. Tests evaluating the ADA-ES patented onsite milling process showed that 85% mercury capture was achieved injecting 4 lb/MMacf of milled activated carbon compared to a requirement of 10 lb/MMacf to achieve the same removal using as-received carbon, representing a 60% reduction in activated carbon consumption. No changes in opacity, APH and ESP performance, or other balance-of-plant effects were observed in these tests.  相似文献   

2.
Gas-phase elemental mercury capture by a V2O5/AC catalyst   总被引:3,自引:0,他引:3  
Gas-phase elemental mercury (Hg0) capture by an activated coke (AC) supported V2O5 (V2O5/AC) catalyst was studied in simulated flue gas and compared with that by the AC. The study on the influences of V2O5 loading, temperature, capture time and flue gas components (O2, SO2, H2O and N2) shows that the Hg0 capture capability of V2O5/AC is much higher than that of AC. It increases with an increase in V2O5 loading and is promoted by O2, which indicates the important role of V2O5 in Hg0 oxidation and capture; it is promoted slightly by SO2 but inhibited by H2O; it increases with an increase in temperature up to 150 °C when Hg desorption starts. X-ray photoelectron spectroscopy analysis and sequential chemical extraction experiments indicate that the main states of Hg captured on V2O5/AC are HgO and HgSO4. Temperature programmed desorption experiments were also made to understand the stability of the Hg captured.  相似文献   

3.
Converting elemental mercury into divalent compound is one of the most important steps for mercury abatement from coal fired flue gas. The oxidation of elemental mercury was investigated in this paper using dielectric barrier discharge (DBD) non-thermal plasma (NTP) technology at room temperature. Effects of different flue gas components like oxygen, moisture, HCl, NO and SO2 were investigated. Results indicate that active radicals including O, O3 and OH all contribute to the oxidation of elemental mercury. Under the conditions of 5% O2 in the simulated flue gas, about 90.2% of Hg0 was observed to be oxidized at 3.68 kV discharge voltage. The increase of discharge voltage, O2 level and H2O content can all improve the oxidation rate, individually. With O2 and H2O both existed, there is an optimal moisture level for the mercury oxidation during the NTP treatment. In this test, the observed optimal moisture level was around 0.74% by volume. Hydrogen chloride can promote the oxidation of mercury due to chlorine atoms produced in the plasma process. Both NO and SO2 have inhibitory effects on mercury oxidation, which can be attributed to their competitive consumption of O3 and O.  相似文献   

4.
A novel silica–titania (SiO2–TiO2) nanocomposite has been developed to effectively capture elemental mercury (Hg0) under UV irradiation. Previous studies under room conditions showed over 99% Hg0 removal efficiency using this nanocomposite. In this work, the performance of the nanocomposite on Hg0 removal was tested in simulated coal-fired power plant flue gas, where water vapor concentration is much higher and various acid gases, such as HCl, SO2, and NOx, are present. Experiments were carried out in a fix-bed reactor operated at 135 °C with a baseline gas mixture containing 4% O2, 12% CO2, and 8% H2O balanced with N2. Results of Hg speciation data at the reactor outlet demonstrated that Hg0 was photocatalytically oxidized and captured on the nanocomposite. The removal efficiency of Hg0 was found to be significantly affected by the flue gas components. Increased water vapor concentration inhibited Hg0 capture, due to the competitive adsorption of water vapor. Both HCl and SO2 promoted the oxidation of Hg0 to Hg(II), resulting in higher removal efficiencies. NO was found to have a dramatic inhibitory effect on Hg0 removal, very likely due to the scavenging of hydroxyl radicals by NO. The effect of NO2 was found to be insignificant. Hg removal in flue gases simulating low rank coal combustion products was found to be less than that from high rank coals, possibly due to the higher H2O concentration and lower HCl and SO2 concentrations of the low rank coals. It is essential, however, to minimize the adverse effect of NO to improve the overall performance of the SiO2–TiO2 nanocomposite.  相似文献   

5.
A series of bench-scale experiments were completed to evaluate acid gases of HCl, SO2, and SO3 on mercury oxidation across a commercial selective catalytic reduction (SCR) catalyst. The SCR catalyst was placed in a simulated flue gas stream containing O2, CO2, H2O, NO, NO2, and NH3, and N2. HCl, SO2, and SO3 were added to the gas stream either separately or in combination to investigate their interactions with mercury over the SCR catalyst. The compositions of the simulated flue gas represent a medium-sulfur and low- to medium-chlorine coal that could represent either bituminous or subbituminous. The experimental data indicated that 5–50 ppm HCl in flue gas enhanced mercury oxidation within the SCR catalyst, possibly because of the reactive chlorine species formed through catalytic reactions. An addition of 5 ppm HCl in the simulated flue gas resulted in mercury oxidation of 45% across the SCR compared to only 4% mercury oxidation when 1 ppm HCl is in the flue gas. As HCl concentration increased to 50 ppm, 63% of Hg oxidation was reached. SO2 and SO3 showed a mitigating effect on mercury chlorination to some degree, depending on the concentrations of SO2 and SO3, by competing against HCl for SCR adsorption sites. High levels of acid gases of HCl (50 ppm), SO2 (2000 ppm), and SO3 (50 ppm) in the flue gas deteriorate mercury adsorption on the SCR catalyst.  相似文献   

6.
This paper reported mercury speciation and emissions from five coal-fired power stations in China. The standard Ontario Hydro Method (OHM) was used into the flue gas mercury sampling before and after fabric filter (FF)/electrostatic precipitator (ESP) locations in these coal-fired power stations, and then various mercury speciation such as Hg0, Hg2+ and HgP in flue gas, was analyzed by using EPA method. The solid samples such as coal, bottom ash and ESP ash, were analyzed by DMA 80 based on EPA Method 7473. Through analysis the mercury speciation varied greatly when flue gas went through FF/ESP. Of the total mercury in flue gas, the concentration of Hg2+ is in the range of 0.11–14.76 μg/N m3 before FF/ESP and 0.02–21.20 μg/N m3 after FF/ESP; the concentration of Hg0 ranges in 1.18–33.63 μg/N m3 before FF/ESP and 0.77–13.57 μg/N m3 after FF/ESP, and that of HgP is in the scope of 0–12.11 μg/N m3 before FF/ESP and 0–0.54 μg/N m3 after FF/ESP. The proportion of Hg2+ ranges from 4.87%–50.93% before FF/ESP and 2.02%–75.55% after FF/ESP, while that of Hg0 is between 13.81% – 94.79% before FF/ESP and 15.69%–98% after FF/ESP, with that of HgP is in the range of 0%–45.13% before FF/ESP and 0%–11.03% after FF/ESP. The mercury in flue gas mainly existed in the forms of Hg0 and Hg2+. The concentrations of chlorine and sulfur in coal and flue gas influence the species of Hg that are formed in the flue gas entering air pollution control devices. The concentrations of chlorine, sulfur and mercury in coal and the compositions of fly ash had significant effects on mercury emissions.  相似文献   

7.
Coal combustion continues to be a major source of energy throughout the world and is the leading contributor to anthropogenic mercury emissions. Effective control of these emissions requires a good understanding of how other flue gas constituents such as sulfur dioxide (SO2) and sulfur trioxide (SO3) may interfere in the removal process. Most of the current literature suggests that SO2 hinders elemental mercury (Hg0) oxidation by scavenging oxidizing species such as chlorine (Cl2) and reduces the overall efficiency of mercury capture, while there is evidence to suggest that SO2 with oxygen (O2) enhances Hg0 oxidation by promoting Cl2 formation below 100 °C. However, studies in which SO2 was shown to have a positive correlation with Hg0 oxidation in full-scale utilities indicate that these interactions may be heavily dependent on operating conditions, particularly chlorine content of the coal and temperature. While bench-scale studies explicitly targeting SO3 are scarce, the general consensus among full-scale coal-fired utilities is that its presence in flue gas has a strong negative correlation with mercury capture efficiency. The exact reason behind this observed correlation is not completely clear, however. While SO3 is an inevitable product of SO2 oxidation by O2, a reaction that hinders Hg0 oxidation, it readily reacts with water vapor, forms sulfuric acid (H2SO4) at the surface of carbon, and physically blocks active sites of carbon. On the other hand, H2SO4 on carbon surfaces may increase mercury capacity either through the creation of oxidation sites on the carbon surface or through a direct reaction of mercury with the acid. However, neither of these beneficial impacts is expected to be of practical significance for an activated carbon injection system in a real coal-fired utility flue gas.  相似文献   

8.
Z.H. Wang  A. Ehn  Z.S. Li  J. Bood  K.F. Cen 《Fuel》2010,89(9):2346-130
Direct ozone (O3) injection is a promising flue-gas treatment technology based on oxidation of NO and Hg into soluble species like NO2, NO3, N2O5, oxidized mercury, etc. These product gases are then effectively removed from the flue gases with the wet flue gas desulfurization system for SO2. The kinetics and mixing behaviors of the oxidation process are important phenomena in development of practical applications. In this work, planar laser-induced fluorescence (PLIF) of NO and NO2 was utilized to investigate the reaction structures between a turbulent O3 jet (dry air with 2000 ppm O3) and a laminar co-flow of simulated flue gas (containing 200 ppm NO), prepared in co-axial tubes. The shape of the reaction zone and the NO conversion rate along with the downstream length were determined from the NO-PLIF measurements. About 62% of NO was oxidized at 15d (d, jet orifice diameter) by a 30 m/s O3 jet with an influence width of about 6d in radius. The NO2 PLIF results support the conclusions deduced from the NO-PLIF measurements.  相似文献   

9.
Costs of biofuel production from energy crops can be reduced by applying the crop residues in heat and power production. Perennial herbaceous crops like Cynara cardunculus L. are challenging fuels because they tend to have high ash and chlorine contents. Coals, however, are often rich in aluminium silicates and sulphur, and co-firing of these biofuels with coal could be expected to reduce operational problems. In addition, CO2 emissions are lower than during coal firing alone. Blends of Cynara and two coals, South African bituminous and Spanish sub-bituminous coal, were combusted in a 20 kW bubbling bed pilot reactor to ascertain the ability of the coals to reduce operational problems by alkali capture. The Cynara fuel sample contained almost 2 wt% chlorine. The South African coal was rich in kaolinite capable of capturing alkalies from chlorides to produce alkali aluminium silicate and HCl. The Spanish coal was rich in sulphur (mostly present as FeS2), and produced high concentrations of SO2 that partially oxidised to SO3. The SO3 can capture alkalies from chlorides by sulphation. Up to 30% Cynara, on energy basis, could be co-fired with Spanish coal without operational problems, whereas the same percentage of Cynara with South African coal led to strong Cl deposition. Co-firing of Cynara with both coals resulted in high HCl emissions (up to 1500 mg/Nm3 in 6% O2). In addition, co-firing of the Spanish coal led to very high SO2 emissions (up to about 16,000 mg/N m3 in 6% O2). Thus, a power plant capable of firing such blends must be equipped with flue gas cleaning equipment for effective SO2 and HCl capture in the flue gas channel after the superheaters, or else the quality of the Cynara must be markedly improved by changing the harvesting technology and fertilisers, which could be major sources of high ash and chlorine content in the fuel.  相似文献   

10.
Ye Zhuang 《Fuel》2007,86(15):2351-2359
Pilot-scale experiments were conducted to investigate mercury transformations in coal flue gas when firing subbituminous coal with a CaCl2 additive. Cofiring the CaCl2 additive with the subbituminous coal resulted in approximately 50% oxidized mercury, as a result of reactive chlorine species formed in coal flue gas, compared to the dominance of elemental mercury in the baseline flue gas. The mercury data indicate that mercury-flue gas chemistry reactions may occur at fairly high temperatures (>400 °C) in chlorine-enriched flue gas. Field tests were conducted to further demonstrate the impact of cofiring CaCl2 on the eventual fate of mercury. These tests were completed on a 650-MW subbituminous coal-fired power plant equipped with selective catalytic reduction (SCR), a fabric filter (FF), and a wet scrubber. Overall mercury removals across the SCR-FF-wet scrubber system ranged from 75% to 96% with 200-800 ppm (coal basis) chlorine addition compared to 18-32% during baseline operations. Field data indicate that the SCR enhanced mercury oxidation, possibly as a result of the supplemental formation of reactive chlorine species and the aid of the SCR catalyst. As a result, most of the mercury in the flue gas was in an oxidized state and was removed in the downstream wet scrubber, indicating that cofiring CaCl2 is an effective mercury control approach for a subbituminous coal-fired plant equipped with an SCR and wet scrubber.  相似文献   

11.
Mercury in coal and its emissions from coal-fired boilers is a topic of primary environmental concern in the United States and Europe. The predominant forms of mercury in coal-fired flue gas are elemental (Hg0) and oxidized (Hg2+, primarily as HgCl2). Because Hg2+ is more condensable and far more water soluble than Hg0, the wide variability in mercury speciation in coal-fired flue gases undermines the total mercury removal efficiency of most mercury emission control technologies. It is important therefore to have an understanding of the behaviour of mercury during coal combustion and the mechanisms of mercury oxidation along the flue gas path. In this study, a temperature programmed decomposition technique was applied in order to acquire an understanding of the mode of decomposition of mercury species during coal combustion. A series of mercury model compounds were used for qualitative calibration. The temperature appearance range of the main mercury species can be arranged in increasing order as HgCl2 < HgS < HgO < HgSO4. Different fly ashes with certified and reference values for mercury concentration were used to evaluate the method. This study has shown that the thermal decomposition test is a newly developed efficient method for identifying and quantifying mercury species from coal combustion products.  相似文献   

12.
Two measurement campaigns were carried out at ENERGI E2's Asnæs Power plant, unit 5. The unit has a capacity of 620 MWe and is equipped with a wet flue gas desulphurisation (FGD) plant employing a counter-current spray absorber with five spray levels. In the first campaign, the power plant was firing Orimulsion® with 2.85 wt% S resulting in a flue gas concentration of SO2 exceeding 2000 ppmv. In the second campaign, the fuel applied was a low-S blended coal and the SO2 concentration in the raw gas was around 400 ppmv. A novel probe for in situ sampling of gas phase concentrations in wet FGD spray absorbers was developed and applied for measuring axial profiles of the SO2 gas phase concentrations in the absorber. The expected decrease in SO2 concentrations along the height of the absorber was found in the spray section (from height 26.5 to 36.2 m) whereas the SO2 concentration above the holding tank and below the gas inlet was quite low probably due to long local residence times in the region. Horizontal variations, due to somewhat different flow conditions near the column wall were investigated and the SO2 concentrations were found to be higher near the wall. Measurements at different gross loads showed that the SO2 gas phase concentration at a given position inside the absorber was roughly linearly related to the L/G ratio in the measuring interval. Turning off one of the lower spray levels, while burning coal with low S content, did not lower the overall removal efficiency of the absorber. However, the SO2 gas phase concentration inside the lower part of the absorber was increased by a factor of 2-3. Measurements of slurry pH at different positions showed a decrease of approximately 0.5 units from the upper to the lower part of the absorber. The full-scale measurements provide a detailed set of experimental data for validation of mathematical models of a wet FGD spray absorber.  相似文献   

13.
Zhen Shu Liu 《Fuel》2005,84(1):5-11
This work evaluates both the removal efficiencies of HCl and SO2 at different points in a spray dryer using Ca(OH)2 as the absorbent. The operating conditions were specified in terms of the temperature of the flue gas (200-300 °C), the HCl concentration (120-1000 ppm), the SO2 concentration (150-500 ppm) and the amount of CaCl2 added (10-30 wt.%).The experimental results showed that the SO2 removal efficiencies were higher in the presence of HCl (120-500 ppm) than in the absence of HCl at 250 °C and 20% relative humidity (RH). However, the removal efficiency of SO2 decreased as the HCl concentration increased. The removal efficiency of SO2 also increased with the amount of CaCl2 in the spray dryer.  相似文献   

14.
Mercury emissions from six coal-fired power plants in China   总被引:1,自引:0,他引:1  
Mercury emission field measurements based on the Ontario Hydro Method (OHM) were conducted for six coal-fired power plants in China. The mercury mass balances for the six power plants varied from 100.3% to 139.5% of the input coal mercury for the whole system. About 0.02%–1.2% of the mercury remained in the bottom ash. In the first five power plants equipped with pulverized coal boiler, most of the mercury was emitted from the stack to the atmosphere. The plants with Electrostatic Precipitator (ESP) system emitted more Hg0 than Hg2+, while the plants with the Fabric Filter (FF) emitted less Hg0 than Hg2+. Virtually all of the HgP enter the ESP or the FF was removed. The FF systems had better Hg0 and Hg2+ removal efficiencies than the ESP systems. The flue gas desulfurization (FGD) system removed up to 78.0% of Hg2+ and only 3.14% of Hg0 in the flue gas, while 8.94% of the original mercury in the coal was removed by the FGD system. The average mercury removal efficiencies of the ESP systems was 11.5%, that of the FF systems was 52.3% and that of the combined ESP + FGD system was 13.7%, much lower than the average removal efficiencies of pollution control device systems in US plants which have been used in previous studies of Chinese mercury emission inventory. Hg0, rather than Hg2+ as assumed in previous estimates, has been found to be the dominant species emitted in the atmosphere. The average emission factor was found to be 4.70 g/TJ (10.92 bl/Tbtu), which is much higher than for US plants burning bituminous coals due to the high mercury content in the Chinese coal and the low mercury removal efficiency of air pollution control devices of power plants.  相似文献   

15.
Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) and Delta Electricity have developed, commissioned and operated an A$7 million aqueous NH3 based post-combustion capture (PCC) pilot plant at the Munmorah black coal fired power station in Australia. The results from the pilot plant trials will be used to address the gap in know-how on application of aqueous NH3 for post-combustion capture of CO2 and other pollutants in the flue gas and explore the potential of the NH3 process for application in the Australia power sector. This paper is one of a series of publications to report and discuss the experimental results obtained from the pilot plant trials and primarily focuses on the absorption section.The pilot plant trials have confirmed the technical feasibility of the NH3 based capture process. CO2 removal efficiency of more than 85% can be achieved even with low NH3 content of up to 6 wt%. The NH3 process is effective for SO2 but not for NO in the flue gas. More than 95% of SO2 in the flue gas is removed in the pre-treatment column using NH3. The mass transfer coefficients for CO2 in the absorber as functions of CO2 loading and NH3 concentration have been obtained based on pilot plant data.  相似文献   

16.
Distributions of mercury speciation of Hg0, Hg2+ and Hg P in flue gas and fly ash were sampled by using the Ontario Hydro Method in a 220 MW pulverized coal-fired boiler power plant in China. The mercury speciation was varied greatly when flue gas going through the electrostatic precipitator (ESP). The mercury adsorbed on fly ashes was found strongly dependent on unburnt carbon content in fly ash and slightly on the particle sizes, which implies that the physical and chemical features of some elemental substances enriched to fly ash surface also have a non-ignored effect on the mercury adsorption. The concentration of chlorine in coal, oxyge nand NO x in flue gas has a positive correlation with the formation of the oxidized mercury, but the sulfur in coal has a positive influence on the formation of elemental mercury. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

17.
In this study, model flue gas was bubbled into 0.25 L tribasic sodium citrate (TSC) solution being in 0.5 L glass absorber to remove its SO2 content. Size of gas bubbles, absorption temperature, gas flow rate, solution concentration and stirring rate were taken as working parameters to investigate their effect on SO2 removal from flue gas. The Taguchi's experimental design method was used to obtain optimum values of working parameters for SO2 saturation time of the TSC solution selected as a quality characteristic. The optimum levels of parameters to maximize the SO2 saturation time of TSC solution were coarse bubbles for gas delivery, 35 °C for absorption temperature, 1.5 slm for gas flow rate, 0.5 M for TSC solution concentration and 500 rpm for stirring rate. Under these conditions, the SO2 saturation time of the TSC solution was achieved as 511 min in average. The most effective parameters on the absorption of SO2 in TSC solutions were ranked to the least as solution concentration, gas flow rate, size of gas bubbles, absorption temperature and stirring rate.  相似文献   

18.
Mercury speciation and emission from two Chinese coal‐fired power stations equipped with flue gas desulfurization device were investigated. Research results reveal that Hg0 is the main form in the flue gas in Plant 1; Hg2+ is the main form in the flue gas in Plant 2. Most of mercury was emitted to the atmosphere, which was about 77–98%, and the elemental mercury released to atmosphere ranged 73–94% approximately. A pot of mercury is adsorbed by bottom ash, electrostatic precipitator (ESP) ash, and gypsum in Plant 1. However, most mercury, the scale of which is 75–83.2%, is collected by ESP ash, and only 7.0–12.2% mercury is emitted to the atmosphere in Plant 2. The mercury removal by NID semi‐desulfurization system is higher than wet flue gas desulfurization (WFGD) desulfurization system.  相似文献   

19.
《Fuel》2003,82(2):147-151
The aim of this paper is to show how a cheap carbonaceous material such as low rank coal-based carbon (or char) can be used in the combined SO2/NO removal from exhaust gas at the linear gas velocity used in commercial systems (0.12 m s−1). Char is produced from carbonization and optionally activated with steam. This char is used in a first step to abate the SO2 concentration at the following conditions: 100 °C, space velocity of 3600 h−1, 6% O2, 10% H2O, 1000 ppmv SO2, 1000 ppmv NO and N2 as remainder. In a second step, when the SO2 concentration in the flue gas is low, NO is reduced to N2 and steam at the following experimental conditions: 150 °C, space velocity of 900 h−1, 6% O2, 10% H2O, 0-500 ppmv SO2, 1000 ppmv NO, 1000 ppmv NH3 and N2 as remainder.It has been shown that the presence of NO has no effect on SO2 abatement during the first step of combined SO2/NO removal system and that low SO2 inlet concentration has a negligible effect on NO reduction in the second step. Moreover, this char can be thermally regenerated after use for various cycles without loss of activity. On the other hand, this regenerated char shows the highest NO removal activity (compared to parent chars, either carbonized or steam activated) which can be attributed to the activating effect of the sulfuric acid formed during the first step of the combined SO2/NO removal system.  相似文献   

20.
M.C. Macías-Pérez 《Fuel》2008,87(12):2544-2550
The present paper analyses the role of the activated carbon (AC) properties on the SO2 uptake capacity of CaO/AC sorbents prepared by AC impregnation or ionic exchange with calcium acetate water solutions. Gas adsorption and mercury porosimetry have been used for textural characterization of the AC and surface oxygen groups have been characterized by temperature programmed desorption (TPD). Thermogravimetry has been used for SO2 retention tests and CO2 chemisorption at 300 °C for CaO dispersion (d) determinations. The results show that the surface calcium on CaO/AC samples, determined as “Ca loading · CaO dispersion” (parameter Ca(%) · d), governs the SO2 uptake. The surface oxygen content is the AC property that mainly controls both the calcium loading and surface calcium on CaO/AC samples, which could be explained by the fact that the surface oxygen lowers the hydrophobic character of the AC supports therefore favouring the interaction with the calcium acetate water solutions. The combination of high calcium loading and dispersion leads to SO2 uptakes up to 123 mg SO2/g. The textural properties of the supports have some influence in the calcium loading. However, the effect is masked by the blockage of AC porosity by the calcium loaded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号