首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work, we first compared yeast mitochondrial oxidative metabolism at different levels of organization: whole cells (C), spheroplasts (S), permeabilized spheroplasts (PS) or isolated mitochondria (M). At present, S are more suitable for use than C for biochemical techniques such as fast extraction of metabolites and permeabilization. We show here that respiratory rates of S with various substrates are similar to C, which demonstrate that they are adapted to yeast bioenergetic studies. It appeared from ethanol metabolism +/- NAD+ or NADH respiratory rates on PS that ethanol metabolism was largely cytosolic; moreover, the activity of NADH dehydrogenase was lesser in the case of PS than in S. By comparing PS and M, the biggest difference concerned the respiratory rates of pyruvate and pyruvate-malate, which were much lower for M. Thus mitochondria preparation caused an unidentified loss involved directly in pyruvate metabolism. When the respiratory rate was lowered as a consequence of a high kinetic control of oxidative activity upstream from the respiratory chain, a similar correlation between the increase in ATP/O and decrease in respiratory rate was observed. So, the intrinsic uncoupling of proton pumps is not a particularity of M. Secondly, we demonstrate the existence of a mechanism of retarded diffusion in yeast similar to that already observed in permeabilized mammalian cells for ADP. Such a mechanism also occurs in yeast for several respiratory substrates: the K0.5 for each substrate toward the respiration rate in PS always exceeds that for M. It is proposed that such a discrepancy is due to a restriction of metabolite movement across the outer mitochondrial membrane in permeabilized cells, i.e. regulation of the substrate permeability through porin channels. In the porin-deficient yeast mutant, the K0.5 for NADH is not significantly different in either M or PS and is comparable to that of the parent strain PS. This result confirms that this retarded diffusion is essentially due to the opening-closing of the porin channel.  相似文献   

2.
The purpose of this work was to show how the quantitative definition of the different parameters involved in mitochondrial oxidative phosphorylation makes it possible to characterize the mechanisms by which the yield of ATP synthesis is affected. Three different factors have to be considered: (i) the size of the different forces involved (free energy of redox reactions and ATP synthesis, proton electrochemical difference); (ii) the physical properties of the inner mitochondrial membrane in terms of leaks (H+ and cations); and finally (iii) the properties of the different proton pumps involved in this system (kinetic properties, regulation, modification of intrinsic stoichiometry). The data presented different situations where one or more of these parameters are affected, leading to a different yield of oxidative phosphorylation. (1) By manipulating the actual flux through each of the respiratory chain units at constant protonmotive force in yeast mitochondria, we show that the ATP/O ratio decreases when the flux increases. Moreover, the highest efficiency was obtained when the respiratory rate was low and almost entirely controlled by the electron supply. (2) By using almitrine in different kinds of mitochondria, we show that this drug leads to a decrease in ATP synthesis efficiency by increasing the H+/ATP stoichiometry ofATP synthase (Rigoulet M et al. Biochim Biophys Acta 1018: 91-97, 1990). Since this enzyme is reversible, it was possible to test the effect of this drug on the reverse reaction of the enzyme i.e. extrusion of protons catalyzed by ATP hydrolysis. Hence, we are able to prove that, in this case, the decrease in efficiency of oxidative phosphorylation is due to a change in the mechanistic stoichiometry of this proton pump. To our knowledge, this is the first example of a modification in oxidative phosphorylation yield by a change in mechanistic stoichiometry of one of the proton pumps involved. (3) In a model of polyunsaturated fatty acid deficiency in rat, it was found that non-ohmic proton leak was increased, while ohmic leak was unchanged. Moreover, an increase in redox slipping was also involved, leading to a complex picture. However, the respective role of these two mechanisms may be deduced from their intrinsic properties. For each steady state condition, the quantitative effect of these two mechanisms in the decrease of oxidative phosphorylation efficiency depends on the values of different fluxes or forces involved. (4) Finally the comparison of the thermokinetic data in view of the three dimensional-structure of some pumps (X-ray diffraction) also gives some information concerning the putative mechanism of coupling (i.e. redox loop or proton pump) and their kinetic control versus regulation of mitochondrial oxidative phosphorylation.  相似文献   

3.
When isolated rat liver mitochondria are incubated in KCI medium, matrix volume, flux, and forces in both hypo- and hyperosmolarity are time-dependent. In hypoosmotic KCl medium, matrix volume is regulated via the K+/H+ exchanger. In hyperosmotic medium, the volume is regulated in such a manner that at steady state, which is reached within 4 min, it is maintained whatever the hyperosmolarity. This regulation is Pi- and deltamuH+-dependent, indicating Pi-K salt entry into the matrix. Under steady state, hyperosmolarity has no effect on isolated rat liver mitochondria energetic parameters such as respiratory rate, proton electrochemical potential difference, and oxidative phosphorylation yield. Hypoosmolarity decreases the NADH/NAD+ ratio, state 3 respiratory rate, and deltamuH+, while oxidative phosphorylation yield is not significantly modified. This indicates kinetic control upstream the respiratory chain. This study points out the key role of potassium on the regulation of matrix volume, flux, and forces. Indeed, while matrix volume is regulated in NaCl hyperosmotic medium, flux and force restoration in hyperosmotic medium occurs only in the presence of external potassium.  相似文献   

4.
Stimulation of hepatocytes with vasopressin evokes increases in cytosolic free Ca2+ ([Ca2+]c) that are relayed into the mitochondria, where the resulting mitochondrial Ca2+ ([Ca2+]m) increase regulates intramitochondrial Ca2+-sensitive targets. To understand how mitochondria integrate the [Ca2+]c signals into a final metabolic response, we stimulated hepatocytes with high vasopressin doses that generate a sustained increase in [Ca2+]c. This elicited a synchronous, single spike of [Ca2+]m and consequent NAD(P)H formation, which could be related to changes in the activity state of pyruvate dehydrogenase (PDH) measured in parallel. The vasopressin-induced [Ca2+]m spike evoked a transient increase in NAD(P)H that persisted longer than the [Ca2+]m increase. In contrast, PDH activity increased biphasically, with an initial rapid phase accompanying the rise in [Ca2+]m, followed by a sustained secondary activation phase associated with a decline in cellular ATP. The decline of NAD(P)H in the face of elevated PDH activity occurred as a result of respiratory chain activation, which was also manifest in a calcium-dependent increase in the membrane potential and pH gradient components of the proton motive force (PMF). This is the first direct demonstration that Ca2+-mobilizing hormones increase the PMF in intact cells. Thus, Ca2+ plays an important role in signal transduction from cytosol to mitochondria, with a single [Ca2+]m spike evoking a complex series of changes to activate mitochondrial oxidative metabolism.  相似文献   

5.
Addition of insulin or a physiological ratio of ketone bodies to buffer with 10 mM glucose increased efficiency (hydraulic work/energy from O2 consumed) of working rat heart by 25%, and the two in combination increased efficiency by 36%. These additions increased the content of acetyl CoA by 9- to 18-fold, increased the contents of metabolites of the first third of the tricarboxylic acid (TCA) cycle 2- to 5-fold, and decreased succinate, oxaloacetate, and aspartate 2- to 3-fold. Succinyl CoA, fumarate, and malate were essentially unchanged. The changes in content of TCA metabolites resulted from a reduction of the free mitochondrial NAD couple by 2- to 10-fold and oxidation of the mitochondrial coenzyme Q couple by 2- to 4-fold. Cytosolic pH, measured using 31P-NMR spectra, was invariant at about 7.0. The total intracellular bicarbonate indicated an increase in mitochondrial pH from 7.1 with glucose to 7.2, 7.5 and 7.4 with insulin, ketones, and the combination, respectively. The decrease in Eh7 of the mitochondrial NAD couple, Eh7NAD+/NADH, from -280 to -300 mV and the increase in Eh7 of the coenzyme Q couple, Eh7Q/QH2, from -4 to +12 mV was equivalent to an increase from -53 kJ to -60 kJ/2 mol e in the reaction catalyzed by the mitochondrial NADH dehydrogenase multienzyme complex (EC 1.6.5.3). The increase in the redox energy of the mitochondrial cofactor couples paralleled the increase in the free energy of cytosolic ATP hydrolysis, delta GATP. The potential of the mitochondrial relative to the cytosolic phases, Emito/cyto, calculated from delta GATP and delta pH on the assumption of a 4 H+ transfer for each ATP synthesized, was -143 mV during perfusion with glucose or glucose plus insulin, and decreased to -120 mV on addition of ketones. Viewed in this light, the moderate ketosis characteristic of prolonged fasting or type II diabetes appears to be an elegant compensation for the defects in mitochondrial energy transduction associated with acute insulin deficiency or mitochondrial senescence.  相似文献   

6.
Mutations in the tRNA genes of mitochondrial DNA (mtDNA) cause the debilitating MELAS (mitochondrial, myopathy, encephalopathy, lactic acidosis and stroke-like episodes) and MERRF (myoclonic epilepsy and ragged-red fibres) syndromes. These mtDNA mutations affect respiratory chain function, apparently without decreasing cellular ATP concentration [Moudy et al. (1995) PNAS, 92, 729-733]. To address this issue, we investigated the role of mitochondrial ATP synthesis in fibroblasts from MELAS and MERRF patients. The maximum rate of mitochondrial ATP synthesis was decreased by 60-88%, as a consequence of the decrease in the proton electrochemical potential gradient of MELAS and MERRF mitochondria. However, in quiescent fibroblasts neither ATP concentration or the ATP/ADP ratio was affected by the lowered rate of ATP synthesis. We hypothesized that the low ATP demand of quiescent fibroblasts masked the mitochondrial ATP synthesis defect and that this defect might become apparent during higher ATP use. To test this we simulated high energy demand by titrating cells with gramicidin, an ionophore that stimulates ATP hydrolysis by the plasma membrane Na+/K+-ATPase. We found a threshold gramicidin concentration in control cells at which both the ATP/ADP ratio and the plasma membrane potential decreased dramatically, due to ATP demand by the Na+/K+-ATPase outstripping mitochondrial ATP synthesis. In MELAS and MERRF fibroblasts the corresponding threshold concentrations of gramicidin were 2-20-fold lower than those for control cells. This is the first demonstration that cells containing mtDNA mutations are particularly sensitive to increased ATP demand and this has several implications for how mitochondrial dysfunction contributes to disease pathophysiology. In particular, the increased susceptibility to plasma membrane depolarization will render neurons with dysfunctional mitochondria susceptible to excitotoxic cell death.  相似文献   

7.
Variations in the cytoplasmic redox potential (Eh) and NADH/NAD ratio as determined by the ratio of reduced to oxidized intracellular metabolite redox couples may affect mitochondrial energetics and alter the excitability and contractile reactivity of vascular smooth muscle. To test these hypotheses, the cytoplasmic redox state was experimentally manipulated by incubating porcine carotid artery strips in various substrates. The redox potentials of the metabolite couples [lactate]/[pyruvate]i and [glycerol 3-phosphate]/[dihydroxyacetone phosphate]i varied linearly (r=0.945), indicating equilibrium between the two cytoplasmic redox systems and with cytoplasmic NADH/NAD. Incubation in physiological salt solution (PSS) containing 10 mm pyruvate ([lact]/[pyr]=0.6) increased O2 consumption approximately 45% and produced anaplerosis of the tricarboxylic acid (TCA cycle), whereas incubation with 10 mm lactate-PSS ([lact]/[pyr]i=47) was without effect. A hyperpolarizing dose of external KCl (10 mM) produced a decrease in resting tone of muscles incubated in either glucose-PSS (-0.8+/-0.8 g) or pyruvate-PSS (-2.1+/-0.8 g), but increased contraction in lactate-PSS (1.5+/-0.7 g) (n=12-18, P<0.05). The rate and magnitude of contraction with 80 mm KCl (depolarizing) was decreased in lactate-PSS (P=0.001). Slopes of KCl concentration-response curves indicated pyruvate>glucose>lactate (P<0.0001); EC50 in lactate (29. 1+/-1.0 mM) was less than that in either glucose (32.1+/-0.9 mm) or pyruvate (32.2+/-1.0 mM), P<0.03. The results are consistent with an effect of the cytoplasmic redox potential to influence the excitability of the smooth muscle and to affect mitochondrial energetics.  相似文献   

8.
Mitochondria uncoupling by fatty acids in vivo is still questionable, being confounded by their dual role as substrates for oxidation and as putative genuine uncouplers of oxidative phosphorylation. To dissociate between substrate and the uncoupling activity of fatty acids in oxidative phosphorylation, the uncoupling effect was studied here using a nonmetabolizable long chain fatty acyl analogue. beta,beta'-Methyl-substituted hexadecane alpha,omega-dioic acid (MEDICA 16) is reported here to induce in freshly isolated liver cells a saturable oligomycin-insensitive decrease in mitochondrial proton motive force with a concomitant increase in cellular respiration. Similarly, MEDICA 16 induced a saturable decrease in membrane potential, proton gradient, and proton motive force in isolated liver and heart mitochondria accompanied by an increase in mitochondrial respiration. Uncoupling by MEDICA 16 in isolated mitochondria was partially suppressed by added atractyloside. Hence, fatty acids may act as genuine uncouplers of cellular oxidative phosphorylation by interacting with specific mitochondrial proteins, including the adenine nucleotide translocase.  相似文献   

9.
In the present study we investigated the influence of several nonsteroidal anti-inflammatory drugs on calcium efflux in isolated rat renal cortex mitochondria in order to assess their potential to disrupt cell calcium homeostasis, as well as aspects of the mechanisms associated with oxidation of mitochondrial pyridine nucleotides (NAD(P)H) and with inhibition of the process by cyclosporin A (CsA). Calcium efflux was estimated with arsenazo III as an indicator and the redox state of NAD(P)H was monitored fluorimetrically at the 366/450 nm excitation/emission wavelength pair. Dipyrone, paracetamol and ibuprofen did not induce calcium efflux even at 1 mM, piroxicam and salicylate were poor inducers, while diclofenac sodium and mefenamic acid were potent inducers releasing calcium even at 20 microM and 10 microM, respectively. In the presence of 10 microM calcium, CsA had no appreciable effect while in the presence of 30 microM calcium it delayed calcium efflux. Oxidation of mitochondrial NAD(P)H, concomitant with calcium efflux and inhibited by CsA, was observed only in the presence of 30 microM calcium. The results suggest that diclofenac sodium and mefenamic acid induce calcium efflux in mitochondria through both a mechanism intrinsic to the mitochondrial membrane permeability transition and a mechanism including the electroneutral Ca2+/nH+ porter.  相似文献   

10.
BACKGROUND: Lactate increases lucigenin chemiluminescence (CL)-detectable superoxide anion (O2.-) generation in bovine vascular smooth muscle and endothelium, and a microsomal flavoprotein-containing NADH oxidase whose activity is regulated by PO2 and cytosolic NAD(H) redox appears to be the detected source of O2.- production. Little is known about the importance of this O2.(-)-producing system in cardiac myocytes. METHODS AND RESULTS: In isolated bovine cardiac myocytes, lactate (10 mmol/L) increased lucigenin-detectable O2.- levels to approximately 1.8 times baseline, whereas pyruvate (10 mmol/L) and mitochondrial probes did not increase the detection of O2.-. A nonmitochondrial NADH oxidase activity, found in microsomes containing a cytochrome b558, was a major source of O2.- production in the homogenate of myocytes, because NADH (0.1 mmol/L) increased basal lucigenin CL >100-fold. NADPH oxidases, mitochondria, and xanthine oxidase were minor sources of detectable O2.- production. However, mitochondria released H2O2 in the presence of 5 mmol/L succinate and 30 micromol/L antimycin, based on its detection as catalase-inhibitable luminol (+horseradish peroxidase)-elicited CL. Diphenyliodonium (DPI), an inhibitor of flavoprotein-containing oxidases, significantly attenuated basal, lactate, and NADH-elicited lucigenin CL. Hypoxia eliminated myocyte lucigenin CL, and posthypoxic reoxygenation caused an 8.6-fold increase in the detection of O2.- that was potentiated by lactate and inhibited by DPI. CONCLUSIONS: NADH oxidase activity linked to cytosolic NAD(H) redox appears to be a key source of O2.- production in cardiac myocytes that could contribute to oxidant signaling mechanisms and injury upon exposure to changes in PO2 and metabolites produced under hypoxia, such as lactate. These processes could contribute to the previously observed potentiation of injury caused by lactate in cardiac ischemia/reperfusion.  相似文献   

11.
This paper reviews the model of the control of mitochondrial substrate oxidation by Ca2+ ions. The mechanism is the activation by Ca2+ of four mitochondrial dehydrogenases, viz. glycerol 3-phosphate dehydrogenase, the pyruvate dehydrogenase multienzyme complex (PDH), NAD-linked isocitrate dehydrogenase (NAD-IDH) and 2-oxoglutarate dehydrogenase (OGDH). This results in the increase, or near-maintenance, of mitochondrial NADH/NAD ratios in the activated state, depending upon the tissue and the degree of 'downstream' activation by Ca2+, likely at the level of the F1Fo ATPase. Higher values of the redox span of the respiratory chain allow for greatly increased fluxes through oxidative phosphorylation with a minimal drop in protonmotive force and phosphorylation potential. As PDH, NAD-IDH and OGDH are all located within the inner mitochondrial membrane, it is changes in matrix free Ca2+ [Ca2+]m which act as a signal to these activities. In this article, we review recent work in which [Ca2+]m is measured in cells and tissues, using different techniques, with special emphasis on the question of the degree of damping of [Ca2+]m relative to changes in cytosol free Ca2+ in cells with rapid transients in cytosol Ca2+, e.g. cardiac myocytes. Further, we put forward the point of view that the failure of mitochondrial energy transduction to keep pace with cellular energy needs in some forms of heart failure may involve a failure of [Ca2+]m to be raised adequately to allow the activation of the dehydrogenases. We present new data to show that this is so in cardiac myocytes isolated from animals suffering from chronic, streptozocin-induced diabetes. This raises the possibility of therapy based upon partial inhibition of mitochondrial Ca2+ efflux pathways, thereby raising [Ca2+]m at a given, time-average value of cytosol free Ca+2.  相似文献   

12.
Confocal laser-scanning and digital fluorescence imaging microscopy were used to quantify the mitochondrial autofluorescence changes of NAD(P)H and flavoproteins in unfixed saponin-permeabilized myofibers from mice quadriceps muscle tissue. Addition of mitochondrial substrates, ADP, or cyanide led to redox state changes of the mitochondrial NAD system. These changes were detected by ratio imaging of the autofluorescence intensities of fluorescent flavoproteins and NAD(P)H, showing inverse fluorescence behavior. The flavoprotein signal was colocalized with the potentiometric mitochondria-specific dye dimethylaminostyryl pyridyl methyl iodide (DASPMI), or with MitoTrackerTM Green FM, a constitutive marker for mitochondria. Within individual myofibers we detected topological mitochondrial subsets with distinct flavoprotein autofluorescence levels, equally responding to induced rate changes of the oxidative phosphorylation. The flavoprotein autofluorescence levels of these subsets differed by a factor of four. This heterogeneity was substantiated by flow-cytometric analysis of flavoprotein and DASPMI fluorescence changes of individual mitochondria isolated from mice skeletal muscle. Our data provide direct evidence that mitochondria in single myofibers are distinct subsets at the level of an intrinsic fluorescent marker of the mitochondrial NAD-redox system. Under the present experimental conditions these subsets show similar functional responses.  相似文献   

13.
The effect of varying the Mg2+ concentration on the 2-oxoglutarate dehydrogenase (2-OGDH) activity and the rate of oxidative phosphorylation of rat heart mitochondria was studied. The ionophore A23187 was used to modify the mitochondrial free Mg2+ concentration. Half-maximal stimulation (K0.5) of ATP synthesis by Mg2+ was obtained with 0.13 +/- 0.02 mM (n = 7) with succinate (+rotenone) and 0.48 +/- 0.13 mM (n = 6) with 2-oxoglutarate (2-OG) as substrates. Similar K0.5 values were found for NAD(P)H formation, generation of membrane potential, and state 4 respiration with 2-OG. In the presence of ADP, an increase in Pi concentration promoted a decrease in the K0.5 values of ATP synthesis, membrane potential formation and state 4 respiration for Mg2+ with 2-OG, but not with succinate. These results indicate that 2-OGDH is the main step of oxidative phosphorylation modulated by Mg2+ when 2-OG is the oxidizable substrate; with succinate, the ATP synthase is the Mg2+-sensitive step. Replacement of Pi by acetate, which promotes changes on intramitochondrial pH abolished Mg2+ activation of 2-OGDH. Thus, the modulation of the 2-OGDH activity by Mg2+ has an essential requirement for Pi (and ADP) in intact mitochondria which is not associated to variations in matrix pH.  相似文献   

14.
1. The direct effects of diazoxide on mitochondrial membrane potential, Ca2+ transport, oxygen consumption and ATP generation were investigated in mouse pancreatic B-cells and rat liver mitochondria. 2. Diazoxide, at concentrations commonly used to open adenosine 5'-triphosphate (ATP)-dependent K+-channels (K(ATP) channels) in pancreatic B-cells (100 to 1000 microM), decreased mitochondrial membrane potential in mouse intact perifused B-cells, as evidenced by an increase of rhodamine 123 fluorescence. This reversible decrease of membrane potential occurred at non-stimulating (5 mM) and stimulating (20 mM) glucose concentrations. 3. A decrease of mitochondrial membrane potential in perifused B-cells was also caused by pinacidil, but no effect could be seen with levcromakalim (500 microM each). 4. Measurements by a tetraphenylphosphonium-sensitive electrode of the membrane potential of rat isolated liver mitochondria confirmed that diazoxide decreased mitochondrial membrane potential by a direct action. Pretreatment with glibenclamide (2 microM) did not antagonize the effects of diazoxide. 5. In Fura 2-loaded B-cells perifused with the Ca2+ channel blocker, D 600, a moderate, reversible increase of intracellular Ca2+ concentration could be seen in response to 500 microM diazoxide. This intracellular Ca2+ mobilization may be due to mitochondrial Ca2+ release, since the reduction of membrane potential of isolated liver mitochondria by diazoxide was accompanied by an accelerated release of Ca2+ stored in the mitochondria. 6. In the presence of 500 microM diazoxide, ATP content of pancreatic islets incubated in 20 mM glucose for 30 min was significantly decreased by 29%. However, insulin secretion from mouse perifused islets induced by 40 mM K+ in the presence of 10 mM glucose was not inhibited by 500 microM diazoxide, suggesting that the energy-dependent processes of insulin secretion distal to Ca2+ influx were not affected by diazoxide at this concentration. 7. The effects of diazoxide on oxygen consumption and ATP production of liver mitochondria varied depending on the respiratory substrates (5 mM succinate, 10 mM alpha-ketoisocaproic acid, 2 mM tetramethyl phenylenediamine plus 5 mM ascorbic acid), indicating an inhibition of respiratory chain complex II. Pinacidil, but not levcromakalim, inhibited alpha-ketoisocaproic acid-fuelled ATP production. 8. In conclusion, diazoxide directly affects mitochondrial energy metabolism, which may be of relevance for stimulus-secretion coupling in pancreatic B-cells.  相似文献   

15.
This study characterizes mitochondria isolated from livers of Sod2(-/+) and Sod2(+/+) mice. A 50% decrease in manganese superoxide dismutase (MnSOD) activity was observed in mitochondria isolated from Sod2(-/+) mice compared with Sod2(+/+) mice, with no change in the activities of either glutathione peroxidase or copper/zinc superoxide dismutase. However, the level of total glutathione was 30% less in liver mitochondria of the Sod2(-/+) mice. The reduction in MnSOD activity in Sod2(-/+) mice was correlated to an increase in oxidative damage to mitochondria: decreased activities of the Fe-S proteins (aconitase and NADH oxidoreductase), increased carbonyl groups in proteins, and increased levels of 8-hydroxydeoxyguanosine in mitochondrial DNA. In contrast, there were no significant changes in oxidative damage in the cytosolic proteins or nuclear DNA. The increase in oxidative damage in mitochondria was correlated to altered mitochondrial function. A significant decrease in the respiratory control ratio was observed in mitochondria isolated from Sod2(-/+) mice compared with Sod2(+/+) mice for substrates metabolized by complexes I, II, and III. In addition, mitochondria isolated from Sod2(-/+) mice showed an increased rate of induction of the permeability transition. Therefore, this study provides direct evidence correlating reduced MnSOD activity in vivo to increased oxidative damage in mitochondria and alterations in mitochondrial function.  相似文献   

16.
Rat liver mitochondria have a specific Ca2+ release pathway which operates when NAD+ is hydrolysed to nicotinamide and ADPribose. NAD+ hydrolysis is Ca(2+)-dependent and inhibited by cyclosporine A (CSA). Mitochondrial Ca2+ release can be activated by the prooxidant t-butylhydroperoxide (tbh) or by gliotoxin (GT), a fungal metabolite of the epipolythiodioxopiperazine group. Tbh oxidizes NADH to NAD+ through an enzyme cascade consisting of glutathione peroxidase, glutathione reductase, and the energy linked transhydrogenase, whereas GT oxidizes some vicinal thiols to the disulfide form, a prerequisite for NAD+ hydrolysis. We report now that rat skeletal muscle mitochondria also contain a specific Ca2+ release pathway activated by both tbh and GT. Ca2+ release increases with the mitochondrial Ca2+ load, is completely inhibited in the presence of CSA, and is paralleled by pyridine nucleotide oxidation. In the presence of tbh and GT, mitochondria do not lose their membrane potential and do not swell, provided continuous release and re-uptake of Ca2+ ('Ca2+ cycling') is prevented. These data support the notion that both tbh- and GT-induced Ca2+ release are not the consequence of an unspecific increase of the inner membrane permeability ('pore' formation). Tbh induces Ca2+ release from rat skeletal muscle less efficiently than from liver mitochondria indicating that the coupling between tbh and NADH oxidation is much weaker in skeletal muscle mitochondria. This conclusion is corroborated by a much lower glutathione peroxidase activity in skeletal muscle than in liver mitochondria. The prooxidant-dependent pathway promotes, under drastic conditions (high mitochondrial Ca2+ loads and high tbh concentrations), Ca2+ release to about the same extent and rate as the Na+/Ca2+ exchanger. This renders the prooxidant-dependent pathway relevant in the pathophysiology of mitochondrial myopathies where its activation by an increased generation of reactive oxygen species probably results in excessive Ca2+ cycling and damage to mitochondria.  相似文献   

17.
Cell swelling is now admitted as being a new principle of metabolic control but little is known about the energetics of cell swelling. We have studied the influence of hypo- or hyperosmolarity on both isolated hepatocytes and isolated rat liver mitochondria. Cytosolic hypoosmolarity on isolated hepatocytes induces an increase in matricial volume and does not affect the myxothiazol sensitive respiratory rate while the absolute value of the overall thermodynamic driving force over the electron transport chain increases. This points to an increase in kinetic control upstream the respiratory chain when cytosolic osmolarity is decreased. On isolated rat liver mitochondria incubated in hypoosmotic potassium chloride media, energetic parameters vary as in cells and oxidative phosphorylation efficiency is not affected. Cytosolic hyperosmolarity induced by sodium co-transported amino acids, per se, does not affect either matrix volume or energetic parameters. This is not the case in isolated rat liver mitochondria incubated in sucrose hyperosmotic medium. Indeed, in this medium, adenine nucleotide carrier is inhibited as the external osmolarity increases, which lowers the state 3 respiration close to state 4 level and consequently leads to a decrease in oxidative phosphorylation efficiency. When isolated rat liver mitochondria are incubated in KCl hyperosmotic medium, state 3 respiratory rate, matrix volume and membrane electrical potential vary as a function of time. Indeed, matrix volume is recovered in hyperosmotic KCl medium and this recovery is dependent on Pi-Kentry. State 3 respiratory rate increases and membrane electrical potential difference decreases during the first minutes of mitochondrial incubation until the attainment of the same value as in isoosmotic medium. This shows that matrix volume, flux and force are regulated as a function of time in KCl hyperosmotic medium. Under steady state, neither matrix volume nor energetic parameters are affected. Moreover, NaCl hyperosmotic medium allows matrix volume recovery but induces a decrease in state 3 respiratory flux. This indicates that potassium is necessary for both matrix volume and flux recovery in isolated mitochondria. We conclude that hypoosmotic medium induces an increase in kinetic control both upstream and on the respiratory chain and changes the oxidative phosphorylation response to forces. At steady state, hyperosmolarity, per se, has no effect on oxidative phosphorylation in either isolated hepatocytes or isolated mitochondria incubated in KCl medium. Therefore, potassium plays a key role in matrix volume, flux and force regulation.  相似文献   

18.
The effect of inhibition of the malate-aspartate shuttle on the cytoplasmic NADH/NAD ratio and NADH redox state and its corresponding effects on mitochondrial energetics in vascular smooth muscle were examined. Incubation of porcine carotid arteries with 0. 4 mmol amino-oxyacetic acid an inhibitor of glutamate-oxaloacetate transaminase and, hence the malate-aspartate shuttle, inhibited O2 consumption by 21%, decreased the content of phosphocreatine and inhibited activity of the tricarboxylic acid cycle. The rate of glycolysis and lactate production was increased but glucose oxidation was inhibited. These effects of amino-oxyacetic acid were accompanied by evidence of inhibition of the malate-aspartate shuttle and elevation in the cytoplasmic redox potential and NADH/NAD ratio as indicated by elevation of the concentration ratios of the lactate/pyruvate and glycerol-3-phosphate/dihydroxyacetone phosphate metabolite redox couples. Addition of the fatty acid octanoate normalized the adverse energetic effects of malate-aspartate shuttle inhibition. It is concluded that the malate-aspartate shuttle is a primary mode of clearance of NADH reducing equivalents from the cytoplasm in vascular smooth muscle. Glucose oxidation and lactate production are influenced by the activity of the shuttle. The results support the hypothesis that an increased cytoplasmic NADH redox potential impairs mitochondrial energy metabolism.  相似文献   

19.
In this work the protonmotive force (delta p), as well as the subcellular distribution of malate, ATP, and ADP were determined in perfused liver from rats fed a low fat or high fat diet, using density gradient fractionation in non aqueous solvents. Rats fed a high fat diet, despite an enhanced hepatic oxygen consumption, exhibit similar delta p to that found in rats fed a low fat diet, but when we consider the two components of delta p, we find a significant decrease in mitochondrial/cytosolic pH difference (delta pH(m)) and a significant increase in mitochondrial membrane potential (delta psi(m)) in rats fed a high fat diet compared to rats fed a low fat diet, which tend to compensate each other. In rats fed a high fat diet the concentration ratio of malate and ATP/ADP does not reflect the changes in delta pH(m) and delta psi(m), which represent the respective driving force for their transport. The findings are in line with an increase in substrate supply to the respiratory chain which is, however, accompanied by a higher energy turnover in livers from HFD rats. By this way the liver could contribute to the lack of weight gain from the high caloric intake in HFD rats.  相似文献   

20.
Mitochondrial DNA from two genetically unrelated patients carrying the mutation at position 11778 that causes Leber's hereditary optic neuropathy has been transferred with mitochondria into human mtDNA-less rho0206 cells. As analyzed in several transmitochondrial cell lines thus obtained, the mutation, which is in the gene encoding subunit ND4 of the respiratory chain NADH dehydrogenase (ND), did not affect the synthesis, size, or stability of ND4, nor its incorporation into the enzyme complex. However, NADH dehydrogenase-dependent respiration, as measured in digitonin-permeabilized cells, was specifically decreased by approximately 40% in cells carrying the mutation. This decrease, which was significant at the 99.99% confidence level, was correlated with a significantly reduced ability of the mutant cells to grow in a medium containing galactose instead of glucose, indicating a clear impairment in their oxidative phosphorylation capacity. On the contrary, no decrease in rotenone-sensitive NADH dehydrogenase activity, using a water-soluble ubiquinone analogue as electron acceptor, was detected in disrupted mitochondrial membranes. This is the first cellular model exhibiting in a foreign nuclear background mitochondrial DNA-linked biochemical defects underlying the optic neuropathy phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号