首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetic and thermodynamic effects of three typical low‐dosage imidazolium‐based ionic liquids (ILs) on methane hydrate formation and dissociation were investigated, considering the anion nature and subcooling and/or overpressure driving forces. Isochoric hydrate formation and dissociation data were obtained by the modified slow step‐heating method. ILs proved to have a dual effect on both formation and dissociation of methane hydrate including thermodynamic and kinetic inhibition. Kinetic modeling of methane hydrate inhibition by low‐dosage ILs was performed. Kinetic analysis showed that IL inhibitors mainly cause a delay in the nucleation or hydrate growth step. The related inhibition mechanism was resolved regarding the ionic nature and electrostatic interactions of ILs with water molecules. Two binomial exponential kinetic relations were derived and used for simple methane hydrate formation in the presence of ILs as kinetic hydrate inhibitors. The proposed relations can serve for a quick estimation of the nature, extent, strength, and effectiveness of ILs on various gas hydrates.  相似文献   

2.
代梦玲  孙志高  李娟  李翠敏  黄海峰 《化工进展》2020,39(10):3975-3986
气体水合物是一种笼形晶体化合物,单位体积的水合物可包含标准状况下160~180(v/v)的天然气,是一种潜在的固态天然气储运方法,受到广泛关注。由于天然气在水中溶解度小,天然气水合物在纯水中通常难以形成,形成的水合物中天然气含量也不高。为提高水合物储存天然气的密度,提高水合物生长速度,研究者探索了多种促进水合物形成的方法,如物理强化以及热力学与动力学促进剂等化学强化方法。本文总结了搅拌、喷雾、鼓泡等机械方法和向水合体系中添加热力学促进剂、动力学促进剂等方法对水合物形成和储气能力的影响,讨论了这些技术措施影响水合物形成与储气能力的机理。指出表面活性剂与其他促进技术的协同是改善水合物生长和储气密度的有效方法,其复合作用机理有待进一步研究。  相似文献   

3.
地面集输管线中水合物堵塞预测研究   总被引:1,自引:0,他引:1  
天然气水合物一旦在地面集输管线中形成就会造成阀门堵塞、管道停输等严重事故,造成重大的经济损失。气流组成、温度、压力和含水量是影响地面集输管线中水合物形成的主要因素,此外,气井产量、管线长度、油管直径等对水合物的形成也有一定的影响。本文综合国内外有关水合物研究成果,并结合长庆气田某气藏生产过程中天然气水合物的生成条件及防治措施,对地面集输管线中天然气水合物堵塞的生成条件及预测模型进行了研究。  相似文献   

4.
Natural gas hydrates easily form in pipelines, causing potential safety issues during oil and gas production and transportation. Injecting gas hydrate inhibitors is one of the most effective methods for preventing gas hydrate formation or aggregation. However, some thermodynamic hydrate inhibitors are toxic and harmful to the environment, whereas degradation of kinetic inhibitors is difficult. Therefore, environmentally friendly and easily biodegradable novel green inhibitors have been proposed and investigated. This paper provides a short but systematic review of the inhibitory performance of amino acids, antifreeze proteins, and ionic liquids. For different hydrate formation systems, the influences of the inhibitor type, structure, and concentration on the inhibitory effects are summarized. The mechanism of green inhibitors as kinetic inhibitors is also discussed. The progress described here will facilitate further developments of such green inhibitors for gas hydrate formation.  相似文献   

5.
周麟晨  孙志高  李娟  李翠敏 《化工进展》2019,38(9):4131-4141
添加促进剂是高效制备水合物的研究热点,促进剂及其添加量对水合物生成效果至关重要。本文主要从热力学促进剂和动力学促进剂两大类型进行分析:总结了可溶水相热力学促进剂和不可溶水相热力学促进剂的浓度对水合物形成相平衡的影响;从表面活性剂、纳米粒子和相变材料等添加剂,阐述了动力学促进剂添加量对水合物生成诱导时间、储气量和生成速率等方面的影响。促进剂都存在最佳浓度的添加量,并且不同类型促进剂复配更有利于水合物生成。目前添加促进剂后水合物形成机理的研究大多从宏观现象推测,部分学者通过拉曼光谱、X射线衍射和显微观察探索分析促进剂对水合物形成的微观影响,这方面研究有待于进一步开展。添加量作为水合物形成促进剂的重要指标,研究者应得到水合物形成促进剂的最佳浓度与所研究对象的关联性。  相似文献   

6.
Gas hydrate/clathrate hydrate formation is an innovative method to trap CO2 into hydrate cages under appropriate thermodynamic and/or kinetic conditions. Due to their excellent surface properties, nanoparticles can be utilized as hydrate kinetic promoters. Here, the kinetics of the CO2 + tetra‐n‐butyl ammonium bromide (TBAB) semi‐clathrate hydrates system in the presence of two distinct nanofluid suspensions containing graphene oxide (GO) nanosheets and Al2O3 nanoparticles is evaluated. The results reveal that the kinetics of hydrate formation is inhibited by increasing the weight fraction of TBAB in aqueous solution. GO and Al2O3 are the most effective kinetic promoters for hydrates of (CO2 + TBAB). Furthermore, the aqueous solutions of TBAB + GO or Al2O3 noticeably increase the storage capacity compared to TBAB aqueous solution systems.  相似文献   

7.
唐翠萍  周雪冰  梁德青 《化工学报》2021,72(2):1125-1131
深水油气资源的勘探开发以及开采过程中的环保要求,使得天然气水合物动力学抑制剂使用不可避免,含动力学抑制剂的分解研究对水合物生成后的解堵具有重要的指导意义。本文在高压反应釜内采用甲烷和丙烷混合气,合成天然气水合物,并用X射线粉晶衍射仪分析了含动力学抑制剂聚乙烯吡咯烷酮的水合物分解过程。结果显示甲烷和丙烷气体会形成SⅡ型水合物,但伴随有SⅠ型甲烷水合物的生成;添加动力学抑制剂后,水合物的分解速率变慢,在-60℃,添加0.5%的聚乙烯吡咯烷酮后,分解起始的20 min内,无抑制剂体系水合物分解可达69%,而在含抑制剂体系分解约18%;SⅡ型甲烷丙烷混合气水合物分解过程中晶胞各晶面分解速率相同,没有偏好性,水合物笼作为一个整体分解,添加抑制剂不改变这种分解方式,仍以整体分解。  相似文献   

8.
With promising applications in cold storage and seawater desalination, various refrigerant gas hydrates are experimentally studied for their phase equilibrium behavior; however, the theoretical modeling to predict their formation conditions is under development. Although a high degree of lattice distortion is expected in these gas hydrates due to highly polar and nonspherical molecules of refrigerants, this issue is not addressed in the van der Waals–Platteeuw theory. With this research gap, we formulate a lattice distortion theory for both pure and mixed refrigerant hydrates. For the first time, ab initio methodology comprising the spin-component scaled MP2 method with Dunning's basis set is implemented for estimating cavity potential of refrigerant hydrates. The extent of lattice distortion is documented in terms of reference chemical potential and enthalpy differences, which are obtained by regressing the Holder's equation with the experimental data of refrigerant hydrate formation. A critical observation is made that the reference properties linearly vary with the “Boltzmann weighted energy-well depth” of the guest. Analyzing the accuracy of the model using average absolute relative deviation between experimental and predicted pressure of hydrate formation, the proposed lattice distortion model outperforms the existing thermodynamic models for variety of pure and mixed refrigerant hydrates.  相似文献   

9.
Low dosage kinetic hydrate inhibitors (KHIs) are a kind of alternative chemical additives to high dosage thermodynamic inhibitors for preventing gas hydrate formation in oil & gas production wells and transportation pipelines. In this paper, a new KHI, poly (N-vinyl caprolactam)-co-tert-butyl acrylate (PVCap-co-TBA), was successfully synthesized with N-vinyl caprolactam (NVCap) and tert-butyl acrylate. The kinetic inhibition performances of PVCap-co-TBA on the formations of both structure I methane hydrate and structure II natural gas hydrate were investigated by measuring the onset times of hydrate formation under different conditions and compared with commercial KHIs such as PVP, PVCap and inhibex 501. The results indicated that PVCap-co-TBA outperformed these widely applied inhibitors for both structure I and structure II hydrates. At the same dosage of KHI, the maximum tolerable degree of subcooling under which the onset time of hydrate formation exceeded 24 hours for structure I hydrate was much lower than that for structure II hydrate. The inhibition strength increased with the increasing dosage of PVCap-co-TBA; The maximum tolerable degree of subcooling for the natural gas hydrate is more than 10 K when the dosage was higher than 0.5% (mass) while it achieved 12 K when that dosage rose to 0.75% (mass). Additionally, we found polypropylene glycol could be used as synergist at the dosage of 1.0 % (mass) or so, under which the kinetic inhibition performance of PVCap-co-TBA could be improved significantly. All evaluation results demonstrated that PVCap-co-TBA was a very promising KHI and a competitive alternative to the existing commercial KHIs.  相似文献   

10.
A one-dimensional mathematical model is presented to describe biochemical reactions and diffusion occurring within massive seafloor gas hydrates. Methanogenesis and anaerobic methane oxidation coupled with sulfate reduction are the two reactions analyzed with emphasis on gas hydrate stability. Many numerical simulations are being developed to predict gas hydrate formation, dissociation, and stability. The model complements these simulations as a subunit by incorporating the consequences of kinetic and transport processes occurring within seafloor gas hydrate capillaries. Better predictions of gas hydrate stability will assist in understanding the role of gas hydrates in the global carbon cycle, particularly as pertaining to global warming.  相似文献   

11.
A precise understanding of phase behavior for a variety of both artificial and natural processes is essential to achieving scientific and technological goals. There has been growing research interest in gas hydrates confined in nanoporous media aiming to simulate and analyze the unique behavior of natural gas hydrates in sediments. Moreover, the appearance of peculiar properties due to the confinement effect stimulates research on gas hydrate technology for gas separation, such as CO2 capture from versatile pre/post combustion emissions. In spite of their importance, reliable phase equilibrium data on gas hydrates confined at a nanoscale are scattered throughout the literature, while those in bulk state are abundant. Accordingly, we surveyed the previous studies on the phase behavior of gas hydrates in various nanoporous materials to include and provide valuable information and knowledge for start-up researchers in various gas hydrate fields.  相似文献   

12.
水合物法分离捕集二氧化碳(CO2)是实现碳减排的重要技术。然而,受制于气体水合物形成分解微观机理的不明确,水合物形成速度慢及气体消耗量低两个关键问题还未得到解决,气体水合物CO2分离捕集技术还未得到商业应用。为了揭示气体水合物形成微观机理,本研究利用激光Raman光谱仪对不同实验条件下生成的CO2水合物进行测试,详细分析了生成的气体水合物的Raman峰,利用低温高压差式扫描量热仪(DSC)对含环戊烷(CP)体系中CO2水合物形成分解进行热表征。研究发现,恒容条件下,初始压力为2.5MPa时,气体消耗量为0.0187 mol/mol,CO2的Raman峰出现在1276.3 cm-1和1379.6 cm-1;初始压力为5.0MPa时,气体消耗量为0.744mol/mol,CO2的Raman峰出现在1276.1 cm-1和1379.6 cm-1。CO2水合物形成分解热结果表明,一方面,随着操作温度、压力条件的变化,形成水合物的种类与结构发生改变;另一方面,对于相同初始体系,最终形成的水合物不是单一的,而是多种水合物共存。此研究结果为进一步理清气体水合物形成微观机理提供了理论基础和重要的科学依据。  相似文献   

13.
1 INTRODUCTION Gas hydrates are serious problems in the petroleum and petrochemical industries since it may cause the plugging of production facilities and trans- portation pipelines during gas and oil production. It is known to all that gas hydrates have three poten- tial hydrate formation structures: structure- structure- and structure-H (SH). The two for- mer structures have been studied extensively and their phase equilibrium conditions are well characterized. For a long time, molecu…  相似文献   

14.
Gas hydrates have drawn global attentions in the past decades as potential energy resources. It should be noted that there are a variety of possible applications of hydrate-based technologies, including natural gas storage, gas transportation, separation of gas mixture, and seawater desalination. These applications have been critically challenged by insufficient understanding of hydrate formation kinetics. In this work, the literatures on growth kinetic behaviors of hydrate formation from water-hydrocarbon were systematically reviewed. The hydrate crystal growth, hydrate film growth and macroscopic hydrate formation in water system were reviewed, respectively. Firstly, the hydrate crystal growth was analyzed with respect to different positions, such as gas/liquid interface, liquid–liquid interface and gas–liquid–liquid system. Secondly, experimental and modeling studies on the growth of hydrate film at the interfaces between guest phase and water phase were categorized into two groups of lateral growth and thickening growth considering the differences in growth rates. Thirdly, we summarized the promoters and inhibitors reported (biological or chemical, liquid or solid and hydrophobic or hydrophilic) and analyzed the mechanisms affecting hydrate formation in bulk water system. Knowledge gaps and suggestions for further studies on hydrate formation kinetic behaviors are presented.  相似文献   

15.
A new thermodynamic model for gas hydrates was established by combining the modified Patel-Teja equation of state proposed for aqueous electrolyte systems and the simplified Holder -John multi -shell hydrate model. The new hydrate model is capable of predicting the hydrate formation/dissociation conditions of natural gas systems containing pure water/formation water (brine) and polar inhibitor without using activity coefficient model. Extensive test results indicate very encouraging results.  相似文献   

16.
1 INTRODUCTIONIn the past two decades,as large reserves of hydrocarbons were discovered in the formof natural gas hydrates stored in deep oceans and permafrost regions such reserves mayturn out to become a tremendous energy source in the future.Among the challengingproblems emerged from offshore oil/gas exploration and production,hydrate research re-ceived new impetus.  相似文献   

17.
[C8min] BF4 was used in this work to combine with TBAB or THF for the investigation about thermodynamic and kinetic additives on CO2 and CH4/CO2 hydrates. The results show that[C8min] BF4 has the inhibition effect on the equilibrium of hydrate formation. About the kinetic study,[C8min] BF4 could improve the rate of CO2 hydrate formation and increase the gas uptake in hydrate phase. At the same time, the combination of TBAB and[C8min] BF4 could increase the mole friction of CH4 in residual gas comparing with the data in THF solution. CH4 separation efficiency was strongly enhanced. Since that the size of CO2 and CH4 molecules are similar, CH4 and CO2 could form the similar hydrate, so the recovery of CH4 from biogas decreases lightly. The CH4 content in biogas can purified from 67 mol% to 77 mol% after one-stage hydrate formation. In addition, the combination of THF and[C8min] BF4 do not have obvious promoting effect on CH4 separation comparing with the gas separation results in pure THF solution.  相似文献   

18.
The paper takes into consideration a new approach for CO2 capture and transport, based on the formation of solid CO2 hydrates.Carbon dioxide sequestration from power plants can take advantage of the properties of gas hydrates. The formation and decomposition of hydrates from various N2-CO2 mixtures has been studied experimentally in a 2 l reactor, to determine the CO2 separation in terms of hydrate composition and residual CO2 content in the reacted gas.Carbon dioxide acts as a co-former for the production of hydrates containing nitrogen, besides CO2. The mixed hydrates that are obtained are less stable than simple CO2 hydrates. When CO2 content in the flue gas is higher than 30% by volume, the hydrates formed at 5 MPa are sufficiently concentrated (about 70% CO2) and carbon dioxide reduction in the reacted gas is acceptable.The application of a process based on hydrate formation could be especially interesting (for CO2 capture and transport) when connected to an oxy-coal combustion process; in this case the CO2 content in the flue gas is very high and the hydrate formation is greatly facilitated.  相似文献   

19.
任俊杰  龙臻  梁德青 《化工学报》2020,71(11):5256-5264
注入抑制剂是油气行业解决管道输送过程因水合物生成而引发的堵塞问题最常用的方法。但现有大多数动力学抑制剂(KHIs)存在抑制性能不足、高过冷度条件下会失效等问题,可应用场合大大受限。离子液体作为绿色溶剂对甲烷水合物具有良好的热力学抑制作用。为改进KHIs的性能,提出将离子液体与KHIs复合。本文实验考察8.0 K过冷度、两种浓度下[1.0%(质量)、2.0%(质量)]离子液体N-丁基-N-甲基吡咯烷四氟硼酸盐([BMP][BF4])、聚乙烯基吡咯烷酮(PVP K90)以及二者复配构成的复合型抑制剂对甲烷水合物抑制规律,得到了最佳组分配比。利用粉末X射线衍射(PXRD)和低温激光拉曼光谱测量了不同抑制剂体系中形成的甲烷水合物晶体微观结构和晶穴占有率,发现添加抑制剂不会改变sI型甲烷水合物晶体结构,但会影响水合物晶体的大、小笼占有率和水合数。结合宏观动力学实验和微观结构测试结果,揭示离子液体与PVP K90复合抑制剂的抑制机理。  相似文献   

20.
Injecting inhibitors is the most commonly used method in the oil and gas industry to solve the problem of blockage caused by hydrate formation during pipeline transportation. However, most of the kinetic hydrate inhibitors (KHIs) are strictly limited by weak inhibition performance and low subcooling. Ionic liquids, a kind of green solvent, have been recognized to act as excellent thermodynamic inhibitors on methane hydrate formation. So, it is proposed to add the ionic liquids into KHIs to improve their overall performance. In this paper, the kinetic effects of an ionic liquid N-butyl-N-methylpyrrolidine tetrafluoroborate ([BMP][BF4]), a commercial kinetic inhibitor polyvinyl pyrrolidone (PVP K90) and their mixtures with different mass ratios on the methane hydrate formation were experimentally studied at 8.0 K subcooling and two concentrations [1.0%(mass) and 2.0%(mass)]. The best mass ratio of the compound inhibitor was determined. Moreover, the crystal structures and cage occupancy characteristics of methane hydrates formed without and with inhibitors at different mass concentrations and composition ratios were measured by using powder X-ray diffraction (PXRD) and low-temperature Laser Raman spectrometers. It was found that the addition of inhibitors did not change the crystal structure of methane hydrate, but affected the cage occupancies and hydration numbers. Based on the results from macroscopic kinetics and microscopic structure tests, the inhibition mechanism of compound inhibitors was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号