首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gas–solid fluidization involving small amounts of liquid is simulated using a CFD‐DEM model. The model tracks the amount of liquid on each particle and wall element and incorporates finite rates of liquid transfer between particles and pendular liquid bridges which form between two particles as well as between a particle and a wall element. Viscous and capillary forces due to these bridges are modeled. Fluidization–defluidization curves show that minimum fluidization velocity and defluidized bed height increase with Bond number (Bo), the ratio of surface tension to gravitational forces, due to cohesion and inhomogeneous flow structures. Under fluidized conditions, hydrodynamics and liquid bridging behavior change dramatically with increasing Bo, and to a lesser extent with capillary number, the ratio of viscous to surface tension forces. Bed fluidity is kept relatively constant across wetting conditions when one maintains a constant ratio of superficial velocity to minimum fluidization velocity under wet conditions. © 2017 American Institute of Chemical Engineers AIChE J, 63: 5290–5302, 2017  相似文献   

2.
Magnetic resonance imaging is used to generate snapshots of particle concentration and velocity fields in gas–solid fluidized beds into which small amounts of liquid are injected. Three regimes of bed behavior (stationary, channeling, and bubbling) are mapped based on superficial velocity and liquid loading. Images are analyzed to determine quantitatively the number of bubbles, the bubble diameter, bed height, and the distribution of particle speeds under different wetting conditions. The cohesion and dissipation provided by liquid bridges cause an increase in the minimum fluidization velocity and a decrease in the number of bubbles and fast particles in the bed. Changes in liquid loading alter hydrodynamics to a greater extent than changes in surface tension or viscosity. Keeping U/Umf at a constant value of 1.5 produced fairly similar hydrodynamics across different wetting conditions. The detailed results presented provide an important dataset for assessment of the validity of assumptions in computational models. © 2017 American Institute of Chemical Engineers AIChE J, 64: 2958–2971, 2018  相似文献   

3.
地下岩石孔隙中小颗粒的运移和沉积会使得储层渗透性能降低,影响石油开发。为了探究悬浮颗粒在多孔介质中的流动过程,采用格子Boltzmann方法对三维多孔介质内流体和颗粒的运动过程进行了数值模拟,采用有限体积颗粒法构建多孔介质中骨架颗粒和悬浮颗粒。通过Half-Way反弹格式实现流体与颗粒间的相互作用,考虑孔隙结构、入口流速、孔隙率和颗粒直径对颗粒流动特性的影响,探究颗粒的运移和沉积规律。结果表明,入口速度对不同孔隙结构下颗粒的运动作用显著。随着入口速度增大,颗粒与颗粒、孔隙壁面以及流体之间的动量和能量交换作用增强,缩短了颗粒的运移路径,颗粒沉积率逐渐变小,颗粒拟温度增大。孔隙率的下降强化了颗粒间的碰撞,孔隙率由0.581降低至0.400,使得颗粒拟温度提升至9倍。颗粒拟温度随颗粒直径的增加而增加。但随着孔隙率增加,颗粒轴向速度增加,颗粒最高轴向速度可达入口流速的11倍,而颗粒接触力降低。  相似文献   

4.
Transport and filtration of micron and submicron particles in porous media is important in applications such as water purification, contaminants dispersion, and drilling mud invasion. Existing macroscopic models often fail to be predictive without empirical adjustments and a more fundamental approach may be required. We develop a physically‐representative, 3D pore network model based on a particle tracking method to simulate particle retention and permeability impairment in polydisperse particle systems. The model includes the effect of hydraulic drag, gravity, electrostatic and van der Waals forces, as well as Brownian motion. A converging‐diverging pore throat geometry is used to capture the mechanism of interception. With the analytical solution of fluid velocity within a pore throat, the trajectory of each particle is calculated explicitly. We also incorporate surface roughness and particle–surface interaction to determine particle attachment and detachment. Pore throat structure and conductivity are updated dynamically to account for the effect of deposited particles. Predictions of effluent concentration and macroscopic filtration coefficient are in good agreement with published experimental data. We find that the filtration coefficient is dependent on the relative angle between fluid flow and gravity. Particle deposition by interception is significant for large particle/grain size ratios. Brownian diffusion is the primary cause of retention at low Peclet numbers, especially for small gravity numbers. Particle size distribution is found to be a cause of hyperexponential deposition often observed in experiments. Permeability reduction was small for strong repulsive forces because particles only deposited in paths of slow velocity. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3118–3131, 2017  相似文献   

5.
The aim of this study was to determine and model efficiency during the filtration of a liquid aerosol through a fibrous filter. A series of experiments demonstrated that liquid particle filtration is different from solid particle filtration in that a drainage state appears, characterized by a constant pressure drop at the end of filter clogging. Moreover, during filter clogging, the number efficiency presents a minimum level for particles close to 100 nm in diameter (the most penetrating particle size). The results also reveal that during filter clogging there is a decrease in the medium's performance for particles smaller than 100 nm and an increase in efficiency for particles with a diameter >200 nm. Both effects are induced by the amount of liquid collected in the medium. Finally, a model is proposed to describe filter efficiency during clogging with a liquid aerosol.  相似文献   

6.
The phase‐Doppler technique has been used to characterize the two‐phase flow of liquid and particles in a stirred vessel agitated by a pitched blade turbine. The number of measurement locations used is considerably larger than in previous investigations and the behaviour of four different types of particles is studied. The fluid phase and particle phase flow is studied with particular emphasis on the relative velocities of the two phases. The largest slip velocities in the tank were found just beneath the impeller, and large slip velocities generally coincide with large velocity gradients. Generally, particles lag in relation to the fluid when the fluid flow is directed upwards, and vice versa, but exceptions to this are not unusual.  相似文献   

7.
《Chemical engineering science》2003,58(3-6):1087-1093
While solid–liquid dispersion in mechanically agitated vessels has been widely investigated, the suspension of particles with simultaneous gas dispersion is, however, less well understood. A consideration of the gassing rate is of particular importance when designing “dead-end” batch reactors. Solid–liquid mass transfer coefficients were determined using the technique of dissolving a sparingly soluble solid, salicylic acid loaded onto silica gel, in water. Mass transfer was found to be dependent on a variety of geometric, physical and hydrodynamic properties; with the significant exception of agitation speed the influence of the latter properties was independent of gas dispersion. Flow visualisation with positron emission particle tracking has been used alongside the mass transfer measurements to study the effects of gas injection on the liquid flow patterns and the solid–liquid slip velocities. Time-averaged relative slip velocities were determined by simple subtraction of the data obtained using a neutrally buoyant particle. Gas dispersion was found to affect the particle–liquid slip velocity, explaining the mass transfer coefficient trends observed. While only a small diameter vessel has been used it does point to considerable non-uniformity of mass transfer in larger vessels.  相似文献   

8.
The rheological characterization of highly filled suspensions consisting of a Newtonian matrix (hydroxyl-terminated polybutadiene), mixed with two different sizes of aluminum powder (30% and above by volume) and two different sizes of glass beads (50% and above by volume), was performed using a parallel disk rheometer with emphasis on the wall slip phenomenon. The effects of the solid content, particle size, type of solid particle material, and temperature on slip velocity and slip layer thickness were investigated. Suspensions of small particles of aluminum (mean diameter of 5.03 μm) did not show slip at any concentration up to the maximum packing fraction. However, suspensions of the other particles exhibited slip at the wall, at concentrations close to their maximum packing fraction. In these suspensions, the slip velocity increased linearly with the shear stress, and at constant shear stress, the slip velocity increased with increasing temperature. The slip layer thickness increased proportionally with increasing size of the particles for the glass beads. Up to a certain value of (filler content/maximum packing fraction), ϕ/ϕm, the slip layer thickness divided by the particle diameter, δ/DP, was 0, but it suddenly increased and reached a value that was independent of ϕ/ϕm and the temperature. On average, the ratio of δ/DP was 0.071 for aluminum and 0.037 for glass beads. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 515–522, 1998  相似文献   

9.
The axisymmetric thermophoretic motion of an aerosol particle of revolution in a uniformly prescribed temperature gradient is studied theoretically. The Knudsen number is assumed to be small so that the fluid flow is described by a continuum model. A method of distribution of a set of spherical singularities along the axis of revolution within a prolate particle or on the fundamental plane within an oblate particle is used to find the general solutions for the temperature distribution and fluid velocity field. The jump/slip conditions on the particle surface are satisfied by applying a boundary‐collocation technique to these general solutions. Numerical results for the thermophoretic velocity of the particle are obtained with good convergence behavior for various cases. For the axisymmetric thermophoresis of an aerosol spheroid with no temperature jump and frictional slip at its surface, the agreement between our results and the available analytical solutions is very good. The thermophoretic velocity of a spheroid along its axis of revolution in general increases with an increase in its axial‐to‐radial aspect ratio, but there are exceptions. For most practical cases of a spheroid with a specified aspect ratio, its thermophoretic mobility is not a monotonic function of its relative jump/slip coefficients and thermal conductivity. © 2008 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

10.
Particle classification becomes difficult when the difference in density between particle and fluid is low or negligible and the fluid is viscous. For such applications, a process capable of separating the particles according to their size is needed. Such applications are, e.g. found in biological systems for cell separation or in the removal of gel particles from polymer melts. Particle transport in laminar tube flows at low but non zero Reynolds numbers leads to accumulation of large particles near the tube center and forms a particle free zone near the wall. Small particles find their position on their equilibrium radius. Downstream widening of the flow enhances segregation between large and small particles. Large particles can be collected in a centered collector tube downstream, whereas small particles follow their streamlines around the collector tube and can be removed with the remaining flow. The said particle migration is observed when the ratio of particle to tube diameter is 0.2<d/D<0.51 and the tube Reynolds number is in between 0.2<Re<40. CFD simulations reveal the shape of the streamlines in the downstream enlargement with different tube Reynolds number. The efficiency of the classification process is characterized. Particles need a sufficient transportation length in the tube for proper demixing. This effect is analyzed by a laser sheet illuminated system within an acrylic glass tube.  相似文献   

11.
The Discrete Element Method combined with Computational Fluid Dynamics was coupled to a capillary liquid bridge force model for computational studies of mixing and segregation behaviors in gas fluidized beds containing dry or wet mixtures of granular materials with different densities. The tendency for density segregation decreased with increasing fluidizing velocity, coefficient of restitution, and amount of liquid present. Due to the presence of strong capillary forces between wet particles, there was a high tendency for particles to form agglomerates during the fluidization process, resulting in lower segregation efficiency in comparison with fluidization of dry particles. Particle‐particle collision forces were on average stronger than both fluid drag forces and capillary forces. The magnitudes of drag forces and particle‐particle collision forces increased with increasing fluidizing velocity and this led to higher mixing or segregation efficiencies observed in dry particles as well as in wet particles at higher fluidizing velocities. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4069–4086, 2015  相似文献   

12.
We perform three-dimensional, time-dependent simulations of dense, fluidized suspensions of solid cylindrical particles in a Newtonian liquid in fully periodic domains. The resolution of the flow field is an order of magnitude finer than the diameter of the cylindrical particles. At their surfaces no-slip conditions are applied through an immersed boundary method (IBM), coupled to the lattice-Boltzmann method that is used as the fluid flow solver. The marker points of the IBM are also used to detect and perform collisions between the cylinders. With these particle-resolved simulations, we study the effects of the aspect ratio of the cylinders and the solids volume fraction on the superficial slip velocity between fluid and solids, on the solids velocity fluctuations, as well as on the orientation of the cylinders. The aspect ratio (length over diameter of the cylinders) ranges from 0.5 to 4, the solids volume fraction goes up to 0.48. Reynolds numbers based on average settling velocity are of the order of 1–10. At constant Archimedes number, we observe only minor sensitivities of the settling Reynolds number on the aspect ratio.  相似文献   

13.
The molecular dynamics simulation is applied to investigate the liquid flow in rough nanochannels with a focus on interfacial velocity slip via three-dimensional Couette flow system. The typical liquid spatial distribution, velocity profile and slip length for liquid flow in rough nanochannels are evaluated and compared with smooth nanochannel. The effects of liquid–solid interaction, surface roughness and shear flow orientation on slip behavior of liquid flow in rough nanochannels are all investigated and discussed. The results indicate that, regardless of whether the liquid flow in transverse or longitudinal flow configuration, the rough surface induces extra energy losses and contributes to the reduction of interfacial velocity in nanochannel when compared with smooth surface. A larger roughness size introduces a more irregular near-wall flow, which results in a smaller interfacial velocity slip. In addition, irrespective of surface condition, increases in liquid–solid interaction strength lead to small interfacial velocity slip and expand the extent of velocity nonlinearity in wall-neighboring region. In particular, the slip behavior of liquid flow in rough nanochannels is also influenced by the shear flow orientation. Interestingly, we find that interfacial velocity slip at the rough solid surface in transverse flow configuration is smaller than that in longitudinal flow configuration.  相似文献   

14.
A 3D simulation study for an incompressible slip flow around a spherical aerosol particle was performed. The full Navier–Stokes equations were solved and the velocity jump at the gas–particle interface was treated numerically by imposition of the slip boundary condition. Analytical solution to the Stokesian slip flow past a spherical particle was used as a benchmark for code verification, and excellent agreement was achieved. The simulation results showed that in addition to the Knudsen number, the Reynolds number affects the slip correction factor. Thus, the Cunningham-based slip corrections must be augmented by the inclusion of the effect of Reynolds number for application to Lagrangian tracking of fine particles. A new expression for the slip correction factor as a function of both Knudsen number and Reynolds number was developed. The particle total drag coefficient was also correlated against Re and Kn over the range of gas–particle relative speeds yielding the incompressible slip flow from the Stokesian regime up to the threshold of compressibility. Inclusion of gas slip on the particle surface enhances the accuracy of particle drag force prediction up to 40.9% in the range of 0.01<Kn<0.1 and 0.125<Re<20 compared to the no-slip continuum drag values.  相似文献   

15.
利用欧拉-欧拉双流体模型对短接触旋流反应器分离腔内气固滑移特性进行了数值模拟,主要研究了切向气固滑移速度的分布规律,并考察了操作参数和物性参数对分离腔内切向滑移速度的影响。计算结果表明,分离腔内切向气固滑移速度沿径向呈“驼峰”分布;当气相入口速度增大或者剂气比减小时,切向气固滑移速度变小,颗粒切向速度增大,离心力增大,有利于提高气固分离效率;颗粒密度对切向滑移速度分布影响不大;颗粒粒径较大时,在排尘口易出现堵塞,不利于长周期运行;建立了截面平均切向气固滑移速度计算模型,计算值与模拟结果误差在±7.0%以内。  相似文献   

16.
17.
Fine particle liquid–solid flow in porous media is involved in many industrial processes such as oil exploitation, geothermal reinjection, and filtration systems. It is of great significance to master the behaviours of the fine particle liquid–solid flow in porous media. At present, there are few studies on the influences of the migration of fine particles on the flow field in porous media, and the effects of the porosity of porous media and inlet fluid velocity on the migration behaviours of fine particles in porous media. In this paper, a liquid–solid flow model was established based on the lattice Boltzmann method (LBM)-immersed boundary method (IBM)-distinct element method (DEM) and verified by the classical Drag Kiss Tumble (DKT) phenomena and flow around a cylinder successfully. In this model, the interaction between solid particles is analyzed using the distinct element method, and the interaction between fine particles and flow field is handled by IBM. Then, the migration and blockage of fine particles in porous media was studied using this model. It is found that, in addition to the blockage, a large amount of blocked-surface sliding-separation occur in fine particles. At the same time, the decrease in porosity increases the damage degree of fine particles on the permeability. The porosity exerts great influence on the penetration rate and dispersion behaviour of fine particles. The inlet fluid velocity mainly affects the residence time of fine particles and the average velocity of motion in the direction perpendicular to the main flow direction.  相似文献   

18.
液固循环流化床两相流动模型   总被引:1,自引:1,他引:0       下载免费PDF全文
引 言流化床换热器具有防、除垢和强化传热等优点 ,在化工、食品、海水淡化、废水处理等领域具有广阔的应用前景[1].目前 ,流化床换热器历经散式流化床、内循环流化床 ,已发展到外循环流化床换热器[2 ],它要求在较稀的颗粒浓度 (颗粒浓度小于 5% )、较高的流速 ( 1~ 3m·s- 1)下操作 .流化床换热器中液体流动及颗粒运动状态的研究对流化床换热器的设计和操作具有重要意义 ,但人们对循环流化床换热器中颗粒运动情况的研究还很缺乏 .考虑到循环流化床换热器中的每根换热管都可作为一个独立的循环流化床对待[3].本文试图建立一滑移速度模型…  相似文献   

19.
This experimental study deals with the influence of slip on the non‐inertial flow of a viscoplastic fluid around a flat plate moving at a constant velocity. The bulk and interfacial properties of the fluid have been finely characterized. The drag force has been analyzed with regards to the flow velocity and for two tribological conditions: adherence and slip. This force decreases with the velocity and is reduced in the presence of slip. Kinematic fields have also been measured by Particle Image Velocimetry (PIV), to determine the influence of both the velocity and the tribological conditions on the liquid and solid regions of the flow. The results highlight no significant influence of the flow velocity on the thickness of the boundary layer and rigid zones. The wall shear stresses along the plate obtained from force measurements and slip velocities are then compared to rheometrical measurements. © 2015 American Institute of Chemical Engineers AIChE J, 62: 1356–1363, 2016  相似文献   

20.
Many subgrid drag modifications have been put forth to account for the effect of small unresolved scales on the resolved mesoscales in dense gas‐particle flows. These subgrid drag modifications significantly differ in terms of their dependencies on the void fraction and the particle slip velocity. We, therefore, compare the hydrodynamics of a three‐dimensional bubbling fluidized bed computed on a coarse grid using the drag correlations of the groups of (i) EMMS, (ii) Kuipers, (iii) Sundaresan, (iv) Simonin, and the homogenous drag law of (v) Wen and Yu with fine grid simulations for two different superficial gas velocities. Furthermore, we present an (vi) alternative approach, which distinguishes between resolved and unresolved particle clusters revealing a grid and slip velocity dependent heterogeneity index. Numerical results are analyzed with respect to the time‐averaged solids volume fraction and its standard deviation, gas and solid flow patterns, bubble size, number density, and rise velocities. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4077–4099, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号