首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A 640 /spl times/ 512 pixel, long-wavelength cutoff, narrowband (/spl Delta//spl lambda///spl lambda//spl sim/10%) quantum-well infrared photodetector (QWIP) focal plane array (FPA), a four-band QWIP FPA in the 4-15 /spl mu/m spectral region, and a broadband (/spl Delta//spl lambda///spl lambda/ /spl sim/ 42%) QWIP FPA having a 15.4 /spl mu/m cutoff have been demonstrated. In this paper, we discuss the electrical and optical characterization of these FPAs, and their performance. In addition, we discuss the development of a very sensitive (NEDT /spl sim/ 10.6 mK) 640 /spl times/ 512 pixel thermal imaging camera having a 9 /spl mu/m cutoff.  相似文献   

2.
Self-organized InAs quantum-dot (QD) lasers emitting at 1.5 /spl mu/m were grown by gas source molecular beam epitaxy on (100) InP substrates. Room temperature continuous-wave (CW) operation of QD-based buried ridge stripe lasers is reported. We investigated experimentally the relevant CW performances of as-cleaved InP-based QD lasers for telecom applications such as temperature properties (T/sub 0/=56 K), infinite length threshold current density (J/sub /spl infin///spl sim/150 A/cm/sup 2/ per QDs layer) and internal efficiency (0.37 W/A). Lasing in pulsed mode is observed for cavity length as short as 200 /spl mu/m with a threshold current of about 37 mA, demonstrating the high gain of the QD's active core. In addition, the Henry parameter of these InP-based QD lasers is experimentally determined using the Hakki-Paoli method (/spl alpha//sub H//spl sim/2.2).  相似文献   

3.
Large-area (500-/spl mu/m diameter) mesa-structure In/sub 0.53/Ga/sub 0.47/As-In/sub 0.52/Al/sub 0.48/As avalanche photodiodes (APDs) are reported. The dark current density was /spl sim/2.5/spl times/10/sup -2/ nA//spl mu/m/sup 2/ at 90% of breakdown; low surface leakage current density (/spl sim/4.2 pA//spl mu/m) was achieved with wet chemical etching and SiO/sub 2/ passivation. An 18 /spl times/ 18 APD array with uniform distributions of breakdown voltage, dark current, and multiplication gain has also been demonstrated. The APDs in the array achieved 3-dB bandwidth of /spl sim/8 GHz at low gain and a gain-bandwidth product of /spl sim/120 GHz.  相似文献   

4.
We demonstrate a high-performance metal-high /spl kappa/ insulator-metal (MIM) capacitor integrated with a Cu/low-/spl kappa/ backend interconnection. The high-/spl kappa/ used was laminated HfO/sub 2/-Al/sub 2/O/sub 3/ with effective /spl kappa/ /spl sim/19 and the low-/spl kappa/ dielectric used was Black Diamond with /spl kappa/ /spl sim/2.9. The MIM capacitor (/spl sim/13.4 fF//spl mu/m/sup 2/) achieved a Q-factor /spl sim/53 at 2.5 GHz and 11.7 pF. The resonant frequency f/sub r/ was 21% higher in comparison to an equivalently integrated Si/sub 3/N/sub 4/-MIM capacitor (/spl sim/0.93 fF//spl mu/m/sup 2/) having similar capacitance 11.2 pF. The impacts of high-/spl kappa/ insulator and low-/spl kappa/ interconnect dielectric on the mechanism for resonant frequency improvement are distinguished using equivalent circuit analysis. This letter suggests that integrated high-/spl kappa/ MIM could be a promising alternative capacitor structure for future high-performance RF applications.  相似文献   

5.
We report the demonstration of high-power semiconductor slab-coupled optical waveguide lasers (SCOWLs) operating at a wavelength of 1.5 /spl mu/m. The lasers operate with large (4/spl times/8 /spl mu/m diameter) fundamental mode and produce output power in excess of 800 mW. These structures have very low loss (/spl sim/0.5 cm/sup -1/) enabling centimeter-long devices for efficient heat removal. The large fundamental mode allows 55% butt-coupling efficiency to standard optical fiber (SMF-28). Comparisons are made between SCOWL structures having nominal 4- and 5-/spl mu/m-thick waveguides.  相似文献   

6.
We have investigated the characteristics of an In/sub 0.4/Ga/sub 0.6/As self-organized quantum-dot (QD) resonant-cavity photodiode. The QD epitaxy and the design of the two-dimensional photonic crystal cavity are tailored for 1.3-/spl mu/m wavelength operation. The input excitation to the photodiode is provided with an in-plane defect waveguide designed with the same photonic crystal. The measured spectral photocurrent characteristics reflect mode coupling between the waveguide and detector and the resonant cavity effect due to total internal reflection and photonic bandgap confinement. The photocurrent response is explained with a model involving the circulating fields in the cavity. The characteristics are also dependent of cavity size. Enhancement and narrowing (/spl sim/ 10 nm) of the photoresponse at /spl lambda//spl sim/1.3 /spl mu/m are observed. A spectral dip, of /spl sim/ 10-nm width, also observed at 1.3 /spl mu/m is possibly due to the anticrossing mechanism, uniquely present in photonic crystal waveguides.  相似文献   

7.
The degradation induced by substrate hot electron (SHE) injection in 0.13-/spl mu/m nMOSFETs with ultrathin (/spl sim/2.0 nm) plasma nitrided gate dielectric was studied. Compared to the conventional thermal oxide, the ultrathin nitrided gate dielectric is found to be more vulnerable to SHE stress, resulting in enhanced threshold voltage (V/sub t/) shift and transconductance (G/sub m/) reduction. The severity of the enhanced degradation increases with increasing nitrogen content in gate dielectric with prolonged nitridation time. While the SHE-induced degradation is found to be strongly related to the injected electron energy for both conventional oxide , and plasma-nitrided oxide, dramatic degradation in threshold voltage shift for nitrided oxide is found to occur at a lower substrate bias magnitude (/spl sim/-1 V), compared to thermal oxide (/spl sim/-1.5 V). This enhanced degradation by negative substrate bias in nMOSFETs with plasma-nitrided gate dielectric is attributed to a higher concentration of paramagnetic electron trap precursors introduced during plasma nitridation.  相似文献   

8.
For the first time, this letter presents a novel post-backend strain applying technique and the study of its impact on MOSFET device performance. By bonding the Si wafer after transistor fabrication onto a plastic substrate (a conventional packaging material FR-4), a biaxial-tensile strain (/spl sim/0.026%) was achieved globally and uniformly across the wafer due to the shrinkage of the bonded adhesive. A drain-current improvement (average /spl Delta/I/sub d//I/sub d//spl sim/10%) for n-MOSFETs uniformly across the 8-in wafer is observed, independent of the gate dimensions (L/sub g//spl sim/55 nm -0.530 /spl mu/m/W /spl sim/2-20 /spl mu/m). The p-MOSFETs also exhibited I/sub d/-improvement by /spl sim/7% under the same biaxial-tensile strain. The strain impact on overall device characteristics was also studied, including increased gate-induced drain leakage and short-channel effects.  相似文献   

9.
A Ge quantum dot (QD) light-emitting diode (LED) is demonstrated using a MOS tunneling structure for the first time. The oxide film was grown by liquid phase deposition at 50/spl deg/C to reduce the thermal budget. The infrared emission of /spl sim/1.5 /spl mu/m was observed from Ge QD MOS LEDs, similar to the p-type-intrinsic-n-type structure reported previously. At the negative gate bias, the electrons in the Al gate electrode tunnel to the Ge QD through the ultrathin oxide and recombine radiatively with holes to emit the /spl sim/1.5/spl mu/m infrared. The electrons also recombine with holes in the Si cap, and the band edge emission from Si is also observed.  相似文献   

10.
This paper demonstrates gate-all-around (GAA) n- and p-FETs on a silicon-on-insulator with /spl les/ 5-nm-diameter laterally formed Si nanowire channel. Alternating phase shift mask lithography and self-limiting oxidation techniques were utilized to form 140- to 1000-nm-long nanowires, followed by FET fabrication. The devices exhibit excellent electrostatic control, e.g., near ideal subthreshold slope (/spl sim/ 63 mV/dec), low drain-induced barrier lowering (/spl sim/ 10 mV/V), and with I/sub ON//I/sub OFF/ ratio of /spl sim/10/sup 6/. High drive currents of /spl sim/ 1.5 and /spl sim/1.0 mA//spl mu/m were achieved for 180-nm-long nand p-FETs, respectively. It is verified that the threshold voltage of GAA FETs is independent of substrate bias due to the complete electrostatic shielding of the channel body.  相似文献   

11.
High-performance, two-dimensional arrays of parallel-addressed InGaN blue micro-light-emitting diodes (LEDs) with individual element diameters of 8, 12, and 20 /spl mu/m, respectively, and overall dimensions 490 /spl times/490 /spl mu/m, have been fabricated. In order to overcome the difficulty of interconnecting multiple device elements with sufficient step-height coverage for contact metallization, a novel scheme involving the etching of sloped-sidewalls has been developed. The devices have current-voltage (I-V) characteristics approaching those of broad-area reference LEDs fabricated from the same wafer, and give comparable (3-mW) light output in the forward direction to the reference LEDs, despite much lower active area. The external efficiencies of the micro-LED arrays improve as the dimensions of the individual elements are scaled down. This is attributed to scattering at the etched sidewalls of in-plane propagating photons into the forward direction.  相似文献   

12.
Short-wavelength (/spl lambda/<4 /spl mu/m) GaInAs-AlAsSb quantum cascade (QC) lasers have been demonstrated using a "bound-to-continuum" design for the purpose of reducing the electric injection power density. As a result, we have reduced the low-temperature electric injection power density of the lasers by 40%, compared to that of GaInAs-AlAsSb QC lasers emitting at the same wavelength but adopting a triple-quantum-well design. The lasers in the present report can operate up to room temperature (300 K) in pulsed mode, emitting at short-wavelength /spl lambda//spl sim/3.7-3.9 /spl mu/m.  相似文献   

13.
The first room-temperature operation of In/sub 0.5/Ga/sub 0.5/As quantum dot lasers grown directly on Si substrates with a thin (/spl les/2 /spl mu/m) GaAs buffer layer is reported. The devices are characterised by J/sub th//spl sim/1500 A/cm/sup 2/, output power >50 mW, and large T/sub 0/ (244 K) and constant output slope efficiency (/spl ges/0.3 W/A) in the temperature range 5-95/spl deg/C.  相似文献   

14.
InGaN-based microhole array light-emitting diodes (LEDs) with hole diameters (d) of 3-15 /spl mu/m were fabricated using self-aligned etching. The effects of size on the device characteristics, including current density-voltage and light output-current density, were measured and compared with those of conventional broad-area (BA) LEDs fabricated from the same wafer. The electrical characteristics of the devices are similar to those of conventional BA LEDs. The light output from the microhole array LEDs increases with d up to 7 /spl mu/m. However, the light output declined as d increased further, perhaps because of the combination of the enhancement in extraction efficiency caused by the large surface areas provided by the sidewalls and the decrease in area of light generation by holes in the microhole array LEDs. The ray tracing method was used with a two-dimensional model in TracePro software. The findings indicate that an optimal design can improve the light output efficiently of the microhole array LEDs.  相似文献   

15.
Lenses based on plasma could offer an alternative to electronic beam steering at high frequencies (/spl sim/100 GHz) and high powers. Presented are beam deflection measurements for a lens which exhibits wide angle deflections (25/spl deg/), good collimation and rapid beam steering (/spl sim/100 /spl mu/s). A practical prototype is described.  相似文献   

16.
Using high-quality polycrystalline chemical-vapor-deposited diamond films with large grains (/spl sim/100 /spl mu/m), field effect transistors (FETs) with gate lengths of 0.1 /spl mu/m were fabricated. From the RF characteristics, the maximum transition frequency f/sub T/ and the maximum frequency of oscillation f/sub max/ were /spl sim/ 45 and /spl sim/ 120 GHz, respectively. The f/sub T/ and f/sub max/ values are much higher than the highest values for single-crystalline diamond FETs. The dc characteristics of the FET showed a drain-current density I/sub DS/ of 550 mA/mm at gate-source voltage V/sub GS/ of -3.5 V and a maximum transconductance g/sub m/ of 143 mS/mm at drain voltage V/sub DS/ of -8 V. These results indicate that the high-quality polycrystalline diamond film, whose maximum size is 4 in at present, is a most promising substrate for diamond electronic devices.  相似文献   

17.
A report is made of the pulsed operation of In/sub 0.53/Ga/sub 0.47/As-AlAs/sub 0.56/Sb/sub 0.44/ quantum cascade structures on an InP substrate. The very large conduction band offset (/spl sim/1.6 eV) of this material system made it possible to observe electroluminescence at /spl lambda//spl sim/3.1 /spl mu/m, the shortest emission wavelength yet observed for any intersubband device.  相似文献   

18.
High-power terahertz quantum-cascade lasers   总被引:2,自引:0,他引:2  
Demonstration of quantum-cascade lasers at /spl sim/4.4 THz (/spl lambda//spl sim/68 /spl mu/m), which are measured to emit 248 mW peak power in pulsed mode, and 138 mW continuous-wave power at heatsink temperatures of 10 K, is reported. These lasers are based on a resonant-phonon depopulation scheme, and use a semi-insulating surface-plasmon waveguide.  相似文献   

19.
We report the detailed characteristics of long-wavelength infrared InP-In/sub 0.53/Ga/sub 0.47/As quantum-well infrared photodetectors (QWIPs) and 640/spl times/512 focal plane array (FPA) grown by molecular beam epitaxy. For reliable assessment of the detector performance, characterization was performed on test detectors of the same size and structure with the FPA pixels. Al/sub 0.27/Ga/sub 0.73/As-GaAs QWIPs with similar spectral response (/spl lambda//sub p/=/spl sim/7.8 /spl mu/m) were also fabricated and characterized for comparison. InP-InGaAs QWIPs (20-period) yielded quantum efficiency-gain product as high as 0.46 under -3-V bias with a 77-K peak detectivity above 1/spl times/10/sup 10/ cm/spl middot/Hz/sup 1/2//W. At 70 K, the detector performance is background limited with f/2 aperture up to /spl sim/ 3-V bias where the peak responsivity (2.9 A/W) is an order of magnitude higher than that of the AlGaAs-GaAs QWIP. The results show that impact ionization in similar InP-InGaAs QWIPs does not start until the average electric-field reaches /spl sim/25 kV/cm, and the detectivity remains high under moderately large bias, which yields high responsivity due to large photoconductive gain. The InP-InGaAs QWIP FPA offers reasonably low noise equivalent temperature difference (NETD) even with very short integration times (/spl tau/).70 K NETD values of the FPA with f/1.5 optics are 36 and 64 mK under bias voltages of -0.5 V (/spl tau/=11 ms) and -2 V (/spl tau/=650 /spl mu/s), respectively. The results clearly show the potential of InP-InGaAs QWIPs for thermal imaging applications requiring high responsivity and short integration times.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号