首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Monte Carlo simulation is a general and robust method for structural reliability analysis, affected by the serious efficiency problem consisting in the need of computing the limit state function a very large number of times. In order to reduce this computational effort the use of several kinds of solver surrogates has been proposed in the recent past. Proposals include the Response Surface Method (RSM), Neural Networks (NN), Support Vector Machines (SVM) and several other methods developed in the burgeoning field of Statistical Learning (SL). Many of these techniques can be employed either for function approximation (regression approach) or for pattern recognition (classification approach). This paper concerns the use of these devices for discriminating samples into safe and failure classes using the classification approach, because it constitutes the core of Monte Carlo simulation as applied to reliability analysis as such. Due to the flexibility of most SL methods, a critical step in their use is the generation of the learning population, as it affects the generalization capacity of the surrogate. To this end it is first demonstrated that the optimal population from the information viewpoint lies around in the vicinity of the limit state function. Next, an optimization method assuring a small as well as highly informative learning population is proposed on this basis. It consists in generating a small initial quasi-random population using Sobol sequence for triggering a Particle Swarm Optimization (PSO) performed over an iteration-dependent cost function defined in terms of the limit state function. The method is evaluated using SVM classifiers, but it can be readily applied also to other statistical classification techniques because the distinctive feature of the SVM, i.e. the margin band, is not actively used in the algorithm. The results show that the method yields results for the probability of failure that are in very close agreement with Monte Carlo simulation performed on the original limit state function and requiring a small number of learning samples.  相似文献   

2.
A method is developed for propagation of model parameter uncertainties into frequency response functions based on a modal representation of the equations of motion. Individual local surrogate models of the eigenfrequencies and residue matrix elements for each mode are trained to build a global surrogate model. The computational cost of the global surrogate model is reduced in three steps. First, modes outside the range of interest, necessary to describe the in-band frequency response, are approximated with few residual modes. Secondly, the dimension of the residue matrices for each mode is reduced using principal component analysis. Lastly, multiple surrogate model structures are employed in a mixture. Cheap second-order multivariate polynomial models and more expensive Gaussian process models with different kernels are used to model the modal data. Leave-one-out cross-validation is used for model selection of the local surrogate models. The approximations introduced allow the method to be used for modally dense models at a small computational cost, without sacrificing the global surrogate model’s ability to capture mode veering and crossing phenomena. The method is compared to a Monte Carlo based approach and verified on one industrial-sized component and on one assembly of two car components.  相似文献   

3.
Sample-based Bayesian inference provides a route to uncertainty quantification in the geosciences and inverse problems in general but is very computationally demanding in the naïve form, which requires simulating an accurate computer model at each iteration. We present a new approach that constructs a stochastic correction to the error induced by a reduced model, with the correction improving as the algorithm proceeds. This enables sampling from the correct target distribution at reduced computational cost per iteration, as in existing delayed-acceptance schemes, while avoiding appreciable loss of statistical efficiency that necessarily occurs when using a reduced model. Use of the stochastic correction significantly reduces the computational cost of estimating quantities of interest within desired uncertainty bounds. In contrast, existing schemes that use a reduced model directly as a surrogate do not actually improve computational efficiency in our target applications. We build on recent simplified conditions for adaptive Markov chain Monte Carlo algorithms to give practical approximation schemes and algorithms with guaranteed convergence. The efficacy of this new approach is demonstrated in two computational examples, including calibration of a large-scale numerical model of a real geothermal reservoir, that show good computational and statistical efficiencies on both synthetic and measured data sets.  相似文献   

4.
Brute force Monte Carlo simulation methods can, in principle, be used to calculate accurately the reliability of complicated structural systems, but the computational burden may be prohibitive. A new Monte Carlo based method for estimating system reliability that aims at reducing the computational cost is therefore proposed. It exploits the regularity of tail probabilities to set up an approximation procedure for the prediction of the far tail failure probabilities based on the estimates of the failure probabilities obtained by Monte Carlo simulation at more moderate levels. In this paper, the usefulness and accuracy of the estimation method is illustrated by application to a particular example of a structure with several thousand potentially critical limit state functions. The effect of varying the correlation of the load components is also investigated.  相似文献   

5.
This paper presents a new and alternative computational tool for predicting failure probability of structural/mechanical systems subject to random loads, material properties, and geometry based on high‐dimensional model representation (HDMR) generated from low‐order function components. HDMR is a general set of quantitative model assessment and analysis tools for capturing the high‐dimensional relationships between sets of input and output model variables. It is a very efficient formulation of the system response, if higher‐order variable correlations are weak, allowing the physical model to be captured by the lower‐order terms and facilitating lower‐dimensional approximation of the original high‐dimensional implicit limit state/performance function. When first‐order HDMR approximation of the original high‐dimensional implicit limit state/performance function is not adequate to provide the desired accuracy to the predicted failure probability, this paper presents an enhanced HDMR (eHDMR) method to represent the higher‐order terms of HDMR expansion by expressions similar to the lower‐order ones with monomial multipliers. The accuracy of the HDMR expansion can be significantly improved using preconditioning with a minimal number of additional input–output samples without directly invoking the determination of second‐ and higher‐order terms. The mathematical foundation of eHDMR is presented along with its applicability to approximate the original high‐dimensional implicit limit state/performance function for subsequent reliability analysis, given that conventional methods for reliability analysis are computationally demanding when applied in conjunction with complex finite element models. This study aims to assess how accurately and efficiently the eHDMR approximation technique can capture complex model output uncertainty. The limit state/performance function surrogate is constructed using moving least‐squares interpolation formula by component functions of eHDMR expansion. Once the approximate form of implicit response function is defined, the failure probability can be obtained by statistical simulation. Results of five numerical examples involving elementary mathematical functions and structural/solid‐mechanics problems indicate that the failure probability obtained using the eHDMR approximation method for implicit limit state/performance function, provides significant accuracy when compared with the conventional Monte Carlo method, while requiring fewer original model simulations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
针对复杂极限状态方程可靠度计算问题,提出了基于理论联合分布函数以及2 种近似联合分布函数的结构失效概率蒙特卡罗模拟方法,并给出了计算流程图.采用2 个算例证明了所提方法的有效性.结果表明:所提的失效概率模拟方法的计算精度很高,尤其适用于复杂极限状态方程的可靠度计算问题.2 种联合分布函数近似构造方法得到的失效概率精度相当,近似方法与精确方法结果的差异随失效概率的减小而增大,而且随着变量间相关性的增加而增加.当失效概率小于10-3时,近似方法的失效概率误差较大.  相似文献   

7.
For the reliability analysis of engineering structures a variety of methods is known, of which Monte Carlo (MC) simulation is widely considered to be among the most robust and most generally applicable. To reduce simulation cost of the MC method, variance reduction methods are applied. This paper describes a method to reduce the simulation cost even further, while retaining the accuracy of Monte Carlo, by taking into account widely present monotonicity. For models exhibiting monotonic (decreasing or increasing) behavior, dynamic bounds (DB) are defined, which in a coupled Monte Carlo simulation are updated dynamically, resulting in a failure probability estimate, as well as a strict (non-probabilistic) upper and lower bounds. Accurate results are obtained at a much lower cost than an equivalent ordinary Monte Carlo simulation. In a two-dimensional and a four-dimensional numerical example, the cost reduction factors are 130 and 9, respectively, where the relative error is smaller than 5%. At higher accuracy levels, this factor increases, though this effect is expected to be smaller with increasing dimension. To show the application of DB method to real world problems, it is applied to a complex finite element model of a flood wall in New Orleans.  相似文献   

8.
This paper presents an assessment of the efficiency of the Kriging interpolation models as surrogate models for structural reliability problems involving time-consuming numerical models such as nonlinear finite element analysis structural models. The efficiency assessment is performed through a systematic comparison of the accuracy of the failure probability predictions based on the first-order reliability method using the most common first- and second-order polynomial regression models and the Kriging interpolation models as surrogates for the true limit state function. An application problem of practical importance in the field of marine structures that requires the evaluation of a nonlinear finite element structural model is adopted as numerical example. The accuracy of the failure probability predictions is characterised as a function of the number of support points, dispersion of the support points in relation to the so-called design point and order of the Kriging basis functions. It is shown with the application problem considered that the Kriging interpolation models are efficient surrogate models for structural reliability problems and can provide significantly more accurate failure probability predictions as compared with the most common polynomial regression models.  相似文献   

9.
In this paper the problem of calculating the probability of failure of linear dynamical systems subjected to random excitations is considered. The failure probability can be described as a union of failure events each of which is described by a linear limit state function. While the failure probability due to a union of non-interacting limit state functions can be evaluated without difficulty, the interaction among the limit state functions makes the calculation of the failure probability a difficult and challenging task. A novel robust reliability methodology, referred to as Wedge-Simulation-Method, is proposed to calculate the probability that the response of a linear system subjected to Gaussian random excitation exceeds specified target thresholds. A numerical example is given to demonstrate the efficiency of the proposed method which is found to be enormously more efficient than Monte Carlo Simulations.  相似文献   

10.
结构可靠性分析需要精确计算结构或系统的失效概率,当结构失效概率低时,运算量大且操作困难。可采用代理模型替代原始性能函数,结合自适应实验设计,在保证准确率的同时大幅减少原始模型的总运行次数。该文提出了基于自适应集成学习代理模型的结构可靠性分析方法,将适应性较广的Kriging与最近发展的PC-Kriging代理模型集成;利用代理模型提供预测点的方差特征,提出新的集成学习函数,识别高预测误差区域,实现高效拟合失效边界;通过主动学习算法在预测误差大和接近极限状态的区域添加采样,迭代更新集成代理模型。通过3个算例,验证了该文方法与单一代理模型结构可靠性分析方法的优势,与AK-MCS+U和AK-MCS+EFF相比,所提方法计算成本低、准确度高。  相似文献   

11.
To evaluate failure probability of structures in the most general case is computationally demanding. The cost can be reduced by using the Response Surface Methodology, which builds a surrogate model of the target limit state function. In this paper authors consider a specific type of response surface, based on the Support Vector Method (SVM). Using the SVM the reliability problem is treated as a classification approach and extensive numerical experimentation has shown that each type of limit state can be adequately represented; however it could require a high number of sampling points. This work demonstrates that, by using a novel sampling strategy based on sampling directions, it is possible to obtain a good approximation of the limit state without high computational complexity. A second-order polynomial SVM model has been adopted, so the need of determining free parameters has been avoided. However, if needed, higher-order polynomial or Gaussian kernel can be adopted to approximate any kind of limit state. Some representative numerical examples show the accuracy and effectiveness of the presented procedure.  相似文献   

12.
The goal of tolerance analysis is to verify whether design tolerances enable a mechanism to be functional. The current method consists in computing a probability of failure using Monte Carlo simulation combined with an optimization scheme called at each iteration. This time consuming technique is not appropriate for complex overconstrained systems. This paper proposes a transformation of the current tolerance analysis problem formulation into a parallel system probability assessment problem using the Lagrange dual form of the optimization problem. The number of events being very large, a preliminary selective search algorithm is used to identify the most contributing events to the probability of failure value. The First Order Reliability Method (FORM) for systems is eventually applied to compute the probability of failure at low cost. The proposed method is tested on an overconstrained mechanism modeled in three dimensions. Results are consistent with those obtained with the Monte Carlo simulation and the computing time is significantly reduced.  相似文献   

13.
This paper presents two techniques, i.e. the proper orthogonal decomposition (POD) and the stochastic collocation method (SCM), for constructing surrogate models to accelerate the Bayesian inference approach for parameter estimation problems associated with partial differential equations. POD is a model reduction technique that derives reduced‐order models using an optimal problem‐adapted basis to effect significant reduction of the problem size and hence computational cost. SCM is an uncertainty propagation technique that approximates the parameterized solution and reduces further forward solves to function evaluations. The utility of the techniques is assessed on the non‐linear inverse problem of probabilistically calibrating scalar Robin coefficients from boundary measurements arising in the quenching process and non‐destructive evaluation. A hierarchical Bayesian model that handles flexibly the regularization parameter and the noise level is employed, and the posterior state space is explored by the Markov chain Monte Carlo. The numerical results indicate that significant computational gains can be realized without sacrificing the accuracy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The probability of failure of reactor vessel with semi–elliptic crack after warm pre-stressing was assessed taken into account the scatter of mechanical properties and loading parameters by Monte–Carlo with importance sampling and first–order reliability method based on limit–state functions from FITNET procedure. The failure assessment diagrams were obtained by means of Monte–Carlo simulations for different crack depth and variable internal pressure.  相似文献   

15.
This paper presents the Kriging model approach for stochastic free vibration analysis of composite shallow doubly curved shells. The finite element formulation is carried out considering rotary inertia and transverse shear deformation based on Mindlin’s theory. The stochastic natural frequencies are expressed in terms of Kriging surrogate models. The influence of random variation of different input parameters on the output natural frequencies is addressed. The sampling size and computational cost is reduced by employing the present method compared to direct Monte Carlo simulation. The convergence studies and error analysis are carried out to ensure the accuracy of present approach. The stochastic mode shapes and frequency response function are also depicted for a typical laminate configuration. Statistical analysis is presented to illustrate the results using Kriging model and its performance.  相似文献   

16.
The paper provides a new model to predict the burst pressure for corroded pipeline by finite element method. Error analysis with commonly used models shows that the new model has better prediction precision. Based on this model, the limit state equation is established and numerically solved by using Monte Carlo Simulation (MCS). It shows that the new model is feasible for reliability analysis of corroded pipelines when compared with other widely used models. The sensitivity analysis of parameters and model revealed that the corrosion depth and the pipeline operation pressure have the most influence on the pipeline failure probability.  相似文献   

17.
Within the performance-based earthquake engineering (PBEE) framework, the fragility model plays a pivotal role. Such a model represents the probability that the engineering demand parameter (EDP) exceeds a certain safety threshold given a set of selected intensity measures (IMs) that characterize the earthquake load. The-state-of-the art methods for fragility computation rely on full non-linear time–history analyses. Within this perimeter, there are two main approaches: the first relies on the selection and scaling of recorded ground motions; the second, based on random vibration theory, characterizes the seismic input with a parametric stochastic ground motion model (SGMM). The latter case has the great advantage that the problem of seismic risk analysis is framed as a forward uncertainty quantification problem. However, running classical full-scale Monte Carlo simulations is intractable because of the prohibitive computational cost of typical finite element models. Therefore, it is of great interest to define fragility models that link an EDP of interest with the SGMM parameters — which are regarded as IMs in this context. The computation of such fragility models is a challenge on its own and, despite a few recent studies, there is still an important research gap in this domain. This comes with no surprise as classical surrogate modeling techniques cannot be applied due to the stochastic nature of SGMM. This study tackles this computational challenge by using stochastic polynomial chaos expansions to represent the statistical dependence of EDP on IMs. More precisely, this surrogate model estimates the full conditional probability distribution of EDP conditioned on IMs. We compare the proposed approach with some state-of-the-art methods in two case studies. The numerical results show that the new method prevails over its competitors in estimating both the conditional distribution and the fragility functions.  相似文献   

18.
This paper presents a comprehensive Bayesian approach for structural model updating which accounts for errors of different kinds, including measurement noise, nonlinear distortions stemming from the linearization of the model, and modeling errors due to the limited predictability of the latter. In particular, this allows the computation of any type of statistics on the updated parameters, such as joint or marginal probability density functions, or confidence intervals. The present work includes four main contributions that make the Bayesian updating approach feasible with general numerical models: (1) the proposal of a specific experimental protocol based on multisine excitations to accurately assess measurement errors in the frequency domain; (2) two possible strategies to represent the modeling error as additional random variables to be inferred jointly with the model parameters; (3) the introduction of a polynomial chaos expansion that provides a surrogate mapping between the probability spaces of the prior random variables and the model modal parameters; (4) the use of an evolutionary Monte Carlo Markov Chain which, in conjunction with the polynomial chaos expansion, can sample the posterior probability density function of the updated parameters at a very reasonable cost. The proposed approach is validated by numerical and experimental examples.  相似文献   

19.
Structural reliability analysis under evidence theory is investigated. It is rigorously proved that a surrogate model providing only correct sign prediction of the performance function can meet the accuracy requirement of evidence-theory-based reliability analysis. Accordingly, a method based on the active learning kriging model which only correctly predicts the sign of the performance function is proposed. Interval Monte Carlo simulation and a modified optimization method based on Karush–Kuhn–Tucker conditions are introduced to make the method more efficient in estimating the bounds of failure probability based on the kriging model. Four examples are investigated to demonstrate the efficiency and accuracy of the proposed method.  相似文献   

20.
A load space formulation for calculating the failure probability of complex structures for which the limit state functions are implicit is described in this paper. This formulation is used in conjunction with probabilistic finite element (PEE) analysis and employs a directional simulation to calculate the structural reliability. Apart from the advantage that a lower order space is used, the main advantage of the load space formulation proposed in this paper is that the number of inversions of the structural stiffness matrix and/or its gradients with respect to the material property random variables is reduced dramatically when compared with the usual Monte Carlo simulation (MCS) method. When used in a finite element reliability analysis, this procedure can save significant amounts of CPU time. Numerical examples are presented to show the efficiency and accuracy of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号