首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We propose a method to couple smoothed particle hydrodynamics and finite elements methods for nonlinear transient fluid–structure interaction simulations by adopting different time‐steps depending on the fluid or solid sub‐domains. These developments were motivated by the need to simulate highly non‐linear and sudden phenomena requiring the use of explicit time integrators on both sub‐domains (explicit Newmark for the solid and Runge–Kutta 2 for the fluid). However, due to critical time‐step required for the stability of the explicit time integrators in, it becomes important to be able to integrate each sub‐domain with a different time‐step while respecting the features that a previously developed mono time‐step coupling algorithm offered. For this matter, a dual‐Schur decomposition method originally proposed for structural dynamics was considered, allowing to couple time integrators of the Newmark family with different time‐steps with the use of Lagrange multipliers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Explicit time integration is a popular method to simulate the dynamical behaviour of a system. Unfortunately, explicit time integration is only conditionally stable: the time step must be chosen not larger than the so-called “critical time step”, otherwise the numerical solution may become unstable. To reduce the CPU time needed to carry out simulations, it is desirable to explore methods that increase the critical time step, which is the main objective of our paper. To do this, first we discuss and compare three approaches to increase the critical time step: micro-inertia formulations from continuum mechanics, inertia penalties which are used in computational mechanics, and mass scaling techniques that are mainly used in structural dynamics. As it turns out, the similarities between these methods are significant, and in fact they are identical in 1D if linear finite elements are used. This facilitates interpretation of the additional parameters in the various methods. Next, we derive, for a few simple finite element types, closed-form expressions for the critical time step with micro-structural magnification factors. Finally, we discuss computational overheads and some implementational details.  相似文献   

3.
The goal of our paper is to demonstrate the cost‐effective use of the Lanczos method for estimating the critical time step in an explicit, transient dynamics code. The Lanczos method can provide a significantly larger estimate for the critical time‐step than an element‐based method (the typical scheme). However, the Lanczos method represents a more expensive method for calculating a critical time‐step than element‐based methods. Our paper shows how the additional cost of the Lanczos method can be amortized over a number of time steps and lead to an overall decrease in run‐time for an explicit, transient dynamics code. We present an adaptive hybrid scheme that synthesizes the Lanczos‐based and element‐based estimates and allows us to run near the critical time‐step estimate provided by the Lanczos method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
We present a general framework to solve elastodynamic problems by means of the virtual element method (VEM) with explicit time integration. In particular, the VEM is extended to analyze nearly incompressible solids using the B-bar method. We show that, to establish a B-bar formulation in the VEM setting, one simply needs to modify the stability term to stabilize only the deviatoric part of the stiffness matrix, which requires no additional computational effort. Convergence of the numerical solution is addressed in relation to stability, mass lumping scheme, element size, and distortion of arbitrary elements, either convex or nonconvex. For the estimation of the critical time step, two approaches are presented, ie, the maximum eigenvalue of a system of mass and stiffness matrices and an effective element length. Computational results demonstrate that small edges on convex polygonal elements do not significantly affect the critical time step, whereas convergence of the VEM solution is observed regardless of the stability term and the element shape in both two and three dimensions. This extensive investigation provides numerical recipes for elastodynamic VEMs with explicit time integration and related problems.  相似文献   

5.
In this work, plate elements based on different kinematic assumptions and variational principles are combined through the Arlequin method. Computational costs are reduced assuming refined models only in those zones with a quasi‐three‐dimensional stress field, whereas computationally cheap, low‐order elements are used in the remaining parts of the plate. Plate elements are formulated on the basis of a unified formulation (UF). Via UF, higher‐order, layer‐wise and mixed theories can be easily formulated. Classical theories, such as Kirchhoff's and Reissner's models, can be obtained as particular cases. UF is extended to the Arlequin method to derive the matrices that account for the coupling between different theories. Multi‐layered composite plates are investigated. Variable kinematic multiple models solutions are assessed towards mono‐model results and three‐dimensional exact results. Numerical investigation has shown that Arlequin method in the context of UF effectively couples sub‐domains having finite elements based upon different theories, reducing the computational costs without loss of accuracy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Meshfree methods (MMs) such as the element free Galerkin (EFG)method have gained popularity because of some advantages over other numerical methods such as the finite element method (FEM). A group of problems that have attracted a great deal of attention from the EFG method community includes the treatment of large deformations and dealing with strong discontinuities such as cracks. One efficient solution to model cracks is adding special enrichment functions to the standard shape functions such as extended FEM, within the FEM context, and the cracking particles method, based on EFG method. It is well known that explicit time integration in dynamic applications is conditionally stable. Furthermore, in enriched methods, the critical time step may tend to very small values leading to computationally expensive simulations. In this work, we study the stability of enriched MMs and propose two mass‐lumping strategies. Then we show that the critical time step for enriched MMs based on lumped mass matrices is of the same order as the critical time step of MMs without enrichment. Moreover, we show that, in contrast to extended FEM, even with a consistent mass matrix, the critical time step does not vanish even when the crack directly crosses a node. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, beam elements based on different kinematic assumptions are combined through the Arlequin method. Computational costs are reduced assuming refined models only in those zones with a quasi-three-dimensional stress field. Variable kinematics beam elements are formulated on the basis of a unified formulation (UF). This formulation is extended to the Arlequin method to derive matrices related to the coupling zones between high- and low-order kinematic beam theories. According to UF, a N-order polynomials approximation is assumed on the beam cross-section for the unknown displacements, being N a free parameter of the formulation. Several hierarchical finite elements can be formulated. Part of the structure can be accurately modelled with computationally cheap low-order elements, part calls for computationally demanding high-order elements. Slender, moderately deep and deep beams are investigated. Square and I-shaped cross-sections are accounted for. A cross-ply laminated composite beam is considered as well. Results are assessed towards Navier-type analytical models and three-dimensional finite element solutions. The numerical investigation has shown that Arlequin method in the context of a hierarchical formulation effectively couples sub-domains having different order finite elements without loss of accuracy and reducing the computational cost.  相似文献   

8.
The numerical modelling of interacting acoustic media by boundary element method–finite element method (BEM–FEM) coupling procedures is discussed here, taking into account time‐domain approaches. In this study, the global model is divided into different sub‐domains and each sub‐domain is analysed independently (considering BEM or FEM discretizations): the interaction between the different sub‐domains of the global model is accomplished by interface procedures. Numerical formulations based on FEM explicit and implicit time‐marching schemes are discussed, resulting in direct and optimized iterative BEM–FEM coupling techniques. A multi‐level time‐step algorithm is considered in order to improve the flexibility, accuracy and stability (especially when conditionally stable time‐marching procedures are employed) of the coupled analysis. At the end of the paper, numerical examples are presented, illustrating the potentialities and robustness of the proposed methodologies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The material point method (MPM) combines Eulerian method and Lagrangian method and thus both Lagrangian particle position and interaction between neighboring Eulerian grid cells will affect the simulation stability. However, the original critical time step formula in the standard MPM does not reflect the effect of particle position and neighboring cell interaction on stability and overestimates the critical time step so much that the CFL number has to be very small, even smaller than 0.1, to obtain a stable solution at extreme particle positions. Therefore, in many engineering applications, the standard MPM is very expensive due to the small CFL number. In this article, the effect of particle position and neighboring cell interaction on stability of the explicit MPM is studied. An explicit critical time step formula is obtained based on the system eigenvalues in one dimension, and is then extended to two and three dimensions. For extreme deformation problems, the geometric stiffness matrix is taken into consideration which modifies the sound speed of particles in the critical time step formula. Several tests are performed to verify our formula and show a decrease in amount of time steps used for simulation with our formula comparing with the original formula.  相似文献   

10.
One of the main computational issues with explicit dynamics simulations is the significant reduction of the critical time step as the spatial resolution of the finite element mesh increases. In this work, a selective mass scaling approach is presented that can significantly reduce the computational cost in explicit dynamic simulations, while maintaining accuracy. The proposed method is based on a multiscale decomposition approach that separates the dynamics of the system into low (coarse scales) and high frequencies (fine scales). Here, the critical time step is increased by selectively applying mass scaling on the fine scale component only. In problems where the response is dominated by the coarse (low frequency) scales, significant increases in the stable time step can be realized. In this work, we use the proper orthogonal decomposition (POD) method to build the coarse scale space. The main idea behind POD is to obtain an optimal low‐dimensional orthogonal basis for representing an ensemble of high‐dimensional data. In our proposed method, the POD space is generated with snapshots of the solution obtained from early times of the full‐scale simulation. The example problems addressed in this work show significant improvements in computational time, without heavily compromising the accuracy of the results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The partition of unity based methods, such as the extended finite element method and the numerical manifold method, are able to construct global functions that accurately reflect local behaviors through introducing locally defined basis functions beyond polynomials. In the dynamic analysis of cracked bodies using an explicit time integration algorithm, as a result, huge difficulties arise in deriving lumped mass matrices because of the presence of those physically meaningless degrees of freedom associated with those locally defined functions. Observing no spatial derivatives of trial or test functions exist in the virtual work of inertia force, we approximate the virtual work of inertia force in a coarser manner than the virtual work of stresses, where we inversely utilize the ‘from local to global’ skill. The proposed lumped mass matrix is strictly diagonal and can yield the results in agreement with the consistent mass matrix, but has more excellent dynamic property than the latter. Meanwhile, the critical time step of the numerical manifold method equipped with an explicit time integration scheme and the proposed mass lumping scheme does not decrease even if the crack in study approaches the mesh nodes — a very excellent dynamic property. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
The discrete element method (DEM) typically uses an explicit numerical integration scheme to solve the equations of motion. However, like all explicit schemes, the scheme is only conditionally stable, with the stability determined by the size of the time step. Currently, there are no comprehensive techniques for estimating appropriate DEM time steps when a nonlinear contact interaction is used. It is common practice to apply a large factor of safety to these estimates to ensure stability, which unnecessarily increases the computational cost of these simulations. This work introduces an alternative framework for selecting a stable time step for nonlinear contact laws, specifically for the Hertz-Mindlin contact law. This approach uses the fact that the discretised equations of motion take the form of a nonlinear map and can be analysed as such. Using this framework, we analyse the effects of both system damping and the initial relative velocity of collision on the critical time step for a Hertz-Mindlin contact event between spherical particles.  相似文献   

13.
This paper focuses on the introduction of a lumped mass matrix for enriched elements, which enables one to use a pure explicit formulation in X‐FEM applications. A proof of stability for the 1D and 2D cases is given. We show that if one uses this technique, the critical time step does not tend to zero as the support of the discontinuity reaches the boundaries of the elements. We also show that the X‐FEM element's critical time step is of the same order as that of the corresponding element without extended degrees of freedom. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
This paper deals with the numerical modelling of cracks in the dynamic case using the extended finite element method. More precisely, we are interested in explicit algorithms. We prove that by using a specific lumping technique, the critical time step is exactly the same as if no crack were present. This somewhat improves a previous result for which the critical time step was reduced by a factor of square root of 2 from the case with no crack. The new lumping technique is obtained by using a lumping strategy initially developed to handle elements containing voids. To be precise, the results obtained are valid only when the crack is modelled by the Heaviside enrichment. Note also that the resulting lumped matrix is block diagonal (blocks of size 2 × 2). For constant strain elements (linear simplex elements) the critical time step is not modified when the element is cut. Thanks to the lumped mass matrix, the critical time step never tends to zero. Moreover, the lumping techniques conserve kinetic energy for rigid motions. In addition, tensile stress waves do not propagate through the discontinuity. Hence, the lumping techniques create neither error on kinetic energy conservation for rigid motions nor wave propagation through the crack. Both these techniques will be used in a numerical experiment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
An Arlequin poromechanics model is introduced to simulate the hydro‐mechanical coupling effects of fluid‐infiltrated porous media across different spatial scales within a concurrent computational framework. A two‐field poromechanics problem is first recast as the twofold saddle point of an incremental energy functional. We then introduce Lagrange multipliers and compatibility energy functionals to enforce the weak compatibility of hydro‐mechanical responses in the overlapped domain. To examine the numerical stability of this hydro‐mechanical Arlequin model, we derive a necessary condition for stability, the twofold inf–sup condition for multi‐field problems, and establish a modified inf–sup test formulated in the product space of the solution field. We verify the implementation of the Arlequin poromechanics model through benchmark problems covering the entire range of drainage conditions. Through these numerical examples, we demonstrate the performance, robustness, and numerical stability of the Arlequin poromechanics model. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
应用复化Cotes数值积分方法改进精细积分方法,建立一种新的高效的精细积分方法:C-PTSIM,并基于有限元理论讨论了此方法在任意随机激励下线性结构随机动力响应的应用。采用复化Cotes积分方法计算结构动力响应状态方程一般解的积分项,推导出随机激励下结构动力响应的显式表达式,利用一阶矩和二阶矩运算规律计算结构响应的均值和方差。C-PTSIM方法避免了精细积分过程中系数矩阵求逆问题,有效改善了精细积分在时间步长内载荷线性化假设带来的误差,在不改变时间步长时采用高次数复化积分时获得与更精细步长时同样精度的结果,表明该方法对时间步长的弱敏感性,并能节省大量的计算时间。基于此方法给出结构随机振动响应分析算例,并与其他方法对比,说明了该方法的高效率和高精度。  相似文献   

17.
An XFEM/Spectral element method for dynamic crack propagation   总被引:3,自引:0,他引:3  
A high-order extended finite element method based on the spectral element method for the simulation of dynamic fracture is developed. The partition of unity for the discontinuous displacement is constructed by employing p order spectral element. This method shows great advantages in the simulations of moving crack and mixed mode crack. The numerical oscillations are effectively suppressed and the accuracy of computed stress intensity factors and crack path are improved markedly. Furthermore the simulation results show that p-refinement is more effective in improving the stress contour near the crack tip than h-refinement. The well known form of the explicit central difference method is used and the critical time step for this method is investigated. We find that by using lumped mass matrix the critical time step Δt c for this high-order extended finite element is almost independent of the crack position.  相似文献   

18.
The contribution of this paper consists of new development of transverse shear stresses through the thickness and finding an expression for the critical time step for explicit time integration of layered shells. This work presents the finite element (FE) formulation and implementation of a higher‐order shear deformable shell element for dynamic explicit analysis of composite and sandwich shells. The formulation is developed using a displacement‐based third‐order shear deformation shell theory. Using the differential equilibrium equations and the interlayer requirements, special treatment is developed for the transverse shear, resulting in a continuous, piecewise quartic distribution of the transverse shear stresses through the shell thickness. Expressions are developed for the critical time step of the explicit time integration for orthotropic homogeneous and layered shells based on the developed third‐order formulation. To assess the performance of the present shell element, it is implemented in the general non‐linear explicit dynamic FE code DYNA3D. Several problems are solved and results are presented and compared to other theoretical and numerical results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double‐sided node‐to‐surface contact or self‐contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time‐stepping scheme. The time step may be fixed or time‐adaptive. New demands on global collision detection are discussed exemplified by position codes and node‐to‐segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号