首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of mammalian homologues of Drosophila TRP proteins, which induce light-activated Ca2+ conductance in photoreceptors, has been an important clue to understand molecular mechanisms underlying receptor-activated Ca2+ influx in vertebrate cells. We have here isolated cDNA that encodes a novel TRP homologue, TRP5, predominantly expressed in the brain. Recombinant expression of the TRP5 cDNA in human embryonic kidney cells dramatically potentiated extracellular Ca2+-dependent rises of intracellular Ca2+ concentration ([Ca2+]i) evoked by ATP. These [Ca2+]i transients were inhibited by SK&F96365, a blocker of receptor-activated Ca2+ entry, and by La3+. Expression of the TRP5 cDNA, however, did not significantly affect [Ca2+]i transients induced by thapsigargin, an inhibitor of endoplasmic reticulum Ca2+-ATPases. ATP stimulation of TRP5-transfected cells pretreated with thapsigargin to deplete internal Ca2+ stores caused intact extracellular Ca2+-dependent [Ca2+]i transients, whereas ATP suppressed [Ca2+]i in thapsigargin-pretreated control cells. Furthermore, in ATP-stimulated, TRP5-expressing cells, there was no significant correlation between Ca2+ release from the internal Ca2+ store and influx of extracellular Ca2+. Whole-cell mode of patch-clamp recording from TRP5-expressing cells demonstrated that ATP application induced a large inward current in the presence of extracellular Ca2+. Omission of Ca2+ from intrapipette solution abolished the current in TRP5-expressing cells, whereas 10 nM intrapipette Ca2+ was sufficient to support TRP5 activity triggered by ATP receptor stimulation. Permeability ratios estimated from the zero-current potentials of this current were PCa:PNa:PCs = 14.3:1. 5:1. Our findings suggest that TRP5 directs the formation of a Ca2+-selective ion channel activated by receptor stimulation through a pathway that involves Ca2+ but not depletion of Ca2+ store in mammalian cells.  相似文献   

2.
The endothelin (ET) isoforms ET-1, ET-2 and ET-3 applied at 100 nM triggered a transient increase in [Ca2+]i in Bergmann glial cells in cerebellar slices acutely isolated from 20-25 day-old mice. The intracellular calcium concentration ([Ca2+]i) was monitored using Fura-2-based [Ca2+]i microfluorimetry. The ET-triggered [Ca2+]i transients were mimicked by ETB receptor agonist BQ-3020 and were inhibited by ETB receptor antagonist BQ-788. ET elevated [Ca2+]i in Ca(2+)-free extracellular solution and the ET-triggered [Ca2+]i elevation was blocked by 500 nM thapsigargin indicating that the [Ca2+]i was released from InsP3-sensitive intracellular pools. The ET-triggered [Ca2+]i increase in Ca(2+)-free solution was shorter in duration. Restoration of normal extracellular [Ca2+] briefly after the ET application induced a second [Ca2+]i increase indicating the presence of a secondary Ca2+ influx which prolongs the Ca2+ signal. Pre-application of 100 microM ATP or 10 microM noradrenaline blocked the ET response suggesting the involvement of a common Ca2+ depot. The expression of ETB receptor mRNAs in Bergmann glial cells was revealed by single-cell RT-PCR. The mRNA was also found in Purkinje neurones, but no Ca2+ signalling was triggered by ET. We conclude that Bergmann glial cells are endowed with functional ETB receptors which induce the generation of intracellular [Ca2+]i signals by activation of Ca2+ release from InsP3-sensitive intracellular stores followed by a secondary Ca2+ influx.  相似文献   

3.
The role of sodium-calcium exchanger in calcium homeostasis in Bergmann glial cells in situ was investigated by monitoring cytoplasmic calcium ([Ca2+]i) and sodium ([Na+]i) concentrations. The [Ca2+]i and [Na+]i transients were measured either separately by using fluorescent indicators fura-2 and SBFI, respectively, or simultaneously using the indicators fluo-3 and SBFI. Since the removal of extracellular Na+ induced a relatively small (approximately 50 nM) elevation of [Ca2+]i, the Na+/Ca2+ exchanger seems to play a minor role in regulation of resting [Ca2+]i. In contrast, kainate-triggered [Ca2+]i increase was significantly suppressed by lowering of the extracellular Na+ concentration ([Na+]o). In addition, manipulations with [Na+]o dramatically affected the recovery of the kainate-induced [Ca2+]i transients. Simultaneous recordings of [Ca2+]i and [Na+]i revealed that kainate-evoked [Ca2+]i transients were accompanied with an increase in [Na+]i. Moreover, kainate induced significantly larger [Ca2+]i and smaller [Na+]i transients under current-clamp conditions as compared to those recorded when the membrane voltage was clamped at -70 mV. The above results demonstrate that the Na(+)-Ca2+ exchanger is operative in Bergmann glial cells in situ and is able to modulate dynamically the amplitude and kinetics of [Ca2+]i signals associated with an activation of ionotropic glutamate receptors.  相似文献   

4.
The effects of the phospholipase C (PLC) inhibitor U73122 on intracellular calcium levels ([Ca2+]i) were studied in MDCK cells. U73122 elevated [Ca2+]i dose-dependently. Ca2+ influx contributed to 75% of 20 microM U73122-induced Ca2+ signals. U73122 pretreatment abolished the [Ca2+]i transients evoked by ATP and bradykinin, suggesting that U73122 inhibited PLC. The Ca2+ signals among individual cells varied considerably. The internal Ca2+ source for the U73122 response was the endoplasmic reticulum (ER) since the response was abolished by thapsigargin. The depletion of the ER Ca2+ store triggered a La3+-sensitive capacitative Ca2+ entry. Independently of the internal release and capacitative Ca2 entry, U73122 directly evoked Ca2+ influx through a La3+-insensitive pathway. The U73122 response was augmented by pretreatment of carbonylcyanide m-chlorophynylhydrozone (CCCP), but not by Na+ removal, implicating that mitochondria contributed significantly in buffering the Ca2+ signal, and that efflux via Na+/Ca2+ exchange was insignificant.  相似文献   

5.
OBJECTIVE: The aim was to examine whether mitochondrial Ca2+ fluxes are high enough to change mitochondrial and cytosolic calcium concentration during the contraction cycle. METHODS: Isolated guinea pig ventricular myocytes were stimulated with paired voltage clamp pulses until contractions were maximal (2 mM [Ca2+]o, 36 degrees C). At defined times of diastole or systole, the cells were shock frozen. Electron-probe microanalysis measured the concentration of total calcium in mitochondria (sigma Ca(mito)) and surrounding cytosol (sigma Cac). Other experiments were performed to evaluate DNP sensitive mitochondrial Ca2+ uptake from depolarisation induced [Ca2+]c transients (K5indo-1 fluorescence). RESULTS: At end of diastole, sigma Ca(mito) was 446 mumol.litre-1. During systole, sigma Ca(mito) increased with a 20 ms delay. A peak sigma Ca(mito) of 1050 mumol.litre-1 was measured 40 ms after start of systole, while 95 ms after start of systole sigma Ca(mito) had fallen to 530 mumol.litre-1. From the changes in sigma Ca(mito) the rates of net mitochondrial Ca2+ flux were estimated at 100 nmol.s-1 x mg-1 protein for Ca2+ influx and 36 nmol.s-1 x mg-1 protein for Ca2+ egress. Decay of sigma Ca(mito) was coupled to a rise in sigma Na(mito). sigma Cl(mito) and sigma K(mito) rose and fell in parallel with sigma Ca(mito), suggesting Ca2+ activation of mitochondrial anion and cation channels. Activation of the non-specific permeability can be excluded. Block of mitochondrial Ca2+ uptake with DNP (100 microM) or FCCP (10 microM) increased the amplitude of the [Ca2+]c transients for 1-3 min by about 50%; evaluation of mitochondrial Ca2+ uptake from DNP sensitive difference signals, however, was hampered by sequestration of mitochondrial Ca2+ into the sarcoplasmic reticulum. CONCLUSIONS: Mitochondrial calcium content changes during each individual contraction cycle; a substantial amount of calcium is taken up during the systole and released during later systole and diastole.  相似文献   

6.
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been reported to increase intracellular Ca2+ concentrations ([Ca2+]i) and catecholamine release in adrenal chromaffin cells. We measured [Ca2+]i with fura-2 and recorded ion currents and membrane potentials with the whole cell configuration of the patch-clamp technique to elucidate the mechanism of PACAP-induced [Ca2+]i increase in bovine adrenal chromaffin cells. PACAP caused [Ca2+]i to increase due to Ca2+ release and Ca2+ influx, and this was accompanied by membrane depolarization and inward currents. The Ca2+ release was suppressed by ryanodine, an inhibitor of caffeine-sensitive Ca2+ stores, but was unaffected by cinnarizine, an inhibitor of inositol trisphosphate-induced Ca2+ release. Ca2+ influx and inward currents were both inhibited by replacement of extracellular Na+, and Ca2+ influx was inhibited by nicardipine, an L-type Ca2+ channel blocker, or by staurosporine, a protein kinase C (PKC) inhibitor, but was unaffected by a combination of omega- conotoxin-GVIA, omega-agatoxin-IVA, and omega-conotoxin- MVIIC, blockers of N-, P-, and Q-type Ca2+ channels. Moreover, 1-oleoyl-2-acetyl-sn-glycerol, a PKC activator, induced inward currents and Ca2+ influx. These results indicate that PACAP causes both Ca2+ release, mainly from caffeine-sensitive Ca2+ stores, and Ca2+ influx via L-type Ca2+ channels activated by membrane depolarization that depends on PKC-mediated Na+ influx.  相似文献   

7.
1. The purpose of the present study was to explore the different mechanisms of [Ca2+]i oscillations induced by high concentrations of either carbachol (CCh) or extracellular Ca2+ ([Ca2+]o). First, we compared the oscillations induced by CCh at concentrations of 100-300 micromol/L and [Ca2+]o (5 mmol/L) in the single rat ventricular myocyte. Second, we studied CCh- and [Ca2+]o-induced [Ca2+]i oscillations following either interference with the production of inositol trisphosphate (IP3), reductions in cytosolic Ca2+ ([Ca2+]i), inhibition of Ca2+ influx and Na+-Ca2+ exchange or depletion of Ca2+ from its intracellular store. 2. The [Ca2+]i oscillations induced by CCh were frequent and were superimposed on [Ca2+]i transients in electrically stimulated cells, whereas those induced by high [Ca2+]o were occasional and occurred in quiescent cells and between [Ca2+]i transients in electrically stimulated cells. In both cases, [Ca2+]i oscillations were preceded by an increase in resting levels of [Ca2+]i. 3. Carbachol-induced [Ca2+]i oscillations were accompanied by an increase in amplitude and prolongation of the time of decline to 80% of the peak of the [Ca2+]i transient, while high [Ca2+]o-induced [Ca2+]i oscillations were the opposite. 4. A reduction of [Ca2+]o to 0.1 mmol/L and treatment with Ni2+ or ryanodine or 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid AM (BAPTA-AM) abolished the [Ca2+]i oscillations induced by both CCh and high [Ca2+]o. 5. The calcium channel blockers verapamil and nifedipine and inhibitors of phospholipase C (neomycin and U-73122) abolished the [Ca2+]i oscillations induced by CCh; Li+ accelerated the onset of the [Ca2+]i oscillations induced by CCh. 6. These observations suggest that the mechanisms responsible for the [Ca2+]i oscillations induced by CCh and high [Ca2+]o are different from each other. Other than an increase in extracellular Ca2+ influx as a mechanism common for both CCh- and high [Ca2+]o-induced [Ca2+]i oscillations, the CCh-induced [Ca2+]i oscillations involve influx of Ca2+ via L-type Ca2+ channels, Na+-Ca2+ exchange, mobilization of intracellular Ca2+ and IP3 production.  相似文献   

8.
A collagen peptide motif (DGEA) which is a putative alpha 2 beta 1 integrin binding site was examined for its ability to activate Ca2+ signalling pathways in the human osteoblast-like cell line SaOS-2. We show that these cells express both alpha 2 beta 1 integrin subunits (by immunocytochemistry) and that an anti-beta 1 monoclonal antibody (DF5) mobilizes Ca2+ in these cells. DGEA elevated intracellular Ca2+ in fura-2-loaded cells, in a concentration- and sequence-dependent fashion, with an EC50 of 250 microM. The tyrosine kinase inhibitor herbimycin A reduced the number of cells responding to DGEA and to transforming growth factor alpha. Thrombin also stimulated a rise in intracellular Ca2+, but the number of cells responding was not reduced by herbimycin A. The DGEA response was dependent on extracellular Ca2+, but was not due to Ca2+ influx, since it was blocked by thapsigargin and not by lanthanum. Using three different anti-alpha 2 monoclonal antibodies, we were unable to show that the DGEA-induced Ca2+ signal was mediated by the alpha 2 beta 1 integrin. In summary, the DGEA collagen motif does appear to activate receptor-mediated Ca2+ signalling events in SaOS-2 cells, in a divalent cation-dependent manner, but we were unable to demonstrate a role for alpha 2 beta 1 integrin in this response.  相似文献   

9.
We measured [Ca2+]i and [Na+]i in isolated transgenic (TG) mouse myocytes overexpressing the Na+-Ca2+ exchanger and in wild-type (WT) myocytes. In TG myocytes, the peak systolic level and amplitude of electrically stimulated (ES) [Ca2+]i transients (0.25 Hz) were not significantly different from those in WT myocytes, but the time to peak [Ca2+]i was significantly prolonged. The decline of ES [Ca2+]i transients was significantly accelerated in TG myocytes. The decline of a long-duration (4-s) caffeine-induced [Ca2+]i transient was markedly faster in TG myocytes, and [Na+]i was identical in TG and WT myocytes, indicating that the overexpressed Na+-Ca2+ exchanger is functionally active. The decline of a short-duration (100-ms) caffeine-induced [Ca2+]i transient in 0 Na+/0 Ca2+ solution did not differ between the two groups, suggesting that the sarcoplasmic reticulum (SR) Ca2+-ATPase function is not altered by overexpression of the Na+-Ca2+ exchanger. There was no difference in L-type Ca2+ current density in WT and TG myocytes. However, the sensitivity of ES [Ca2+]i transients to nifedipine was reduced in TG myocytes. This maintenance of [Ca2+]i transients in nifedipine was inhibited by Ni2+ and required SR Ca2+ content, consistent with enhanced Ca2+ influx by reverse Na+-Ca2+ exchange, and the resulting Ca2+-induced Ca2+ release from SR. The rate of rise of [Ca2+]i transients in nifedipine in TG myocytes was much slower than when both the L-type Ca2+ current and the Na+-Ca2+ exchange current function together. In TG myocytes, action potential amplitude and action potential duration at 50% repolarization were reduced, and action potential duration at 90% repolarization was increased, relative to WT myocytes. These data suggest that under these conditions, overexpression of the Na+-Ca2+ exchanger in TG myocytes accelerates the decline of [Ca2+]i during relaxation, indicating enhanced forward Na+-Ca2+ exchanger function. Increased Ca2+ influx also appears to occur, consistent with enhanced reverse function. These findings provide support for the physiological importance of both these modes of Na+-Ca2+ exchange.  相似文献   

10.
Cytosolic Ca2+ ([Ca2+]i) plays an important role in endothelial cell signaling. Although it has been suggested that the influx of Ca2+ can be triggered by depletion of intracellular Ca2+ stores, the mechanism (or mechanisms) underlying this phenomenon needs further elaboration. In the present study, involvement of myosin light-chain kinase (MLCK) in the regulation of Ca2+ signaling was investigated in agonist- and fluid flow-stimulated endothelial cells loaded with Ca2+-sensitive dyes. Bradykinin (BK) and thapsigargin caused an increase in [Ca2+]i followed by a sustained rise due to Ca2+ influx from extracellular space and shifted total myosin light-chain (MLC) from the unphosphorylated to the diphosphorylated form. ML-9 (100 microM), an inhibitor of MLCK, abolished Ca2+ influx and prevented MLC diphosphorylation in BK- and thapsigargin-treated cells, but did not affect Ca2+ mobilization from internal stores. Fluid flow stimulation (shear stress=5 dynes/cm2) increased [Ca2+]i and enhanced MLC phosphorylation. ML-9 also inhibited Ca2+ response and MLC phosphorylation in fluid flow-stimulated cells. The Ca2+ influx in response to BK was linearly correlated with the diphosphorylation of MLC in ML-9 treated cells. Effects of ML-5 and ML-7, analogs of ML-9, to inhibit Ca2+ influx paralleled their potencies to inhibit MLCK activity. These findings demonstrate that MLCK plays an essential role in regulating the plasmalemmal Ca2+ influx in agonist- and fluid flow-stimulated endothelial cells. This study is the first to report the close relationship between Ca2+ influx and MLC diphosphorylation.  相似文献   

11.
Renal ischemia results in adenosine triphosphate (ATP) depletion, particularly in cells of the proximal tubule (PT), which rely heavily on oxidative phosphorylation for energy supply. Lack of ATP leads to a disturbance in intracellular homeostasis of Na+, K+ and Cl-. Also, cytosolic Ca2+ levels in renal PTs may increase during hypoxia [1], presumably by a combination of impaired extrusion and enhanced influx [2]. However, Ca2+ influx was previously measured using radiolabeled Ca2+ and at varying partial oxygen tension [2]. We have now used to Mn2(+)-induced quenching of fura-2 fluorescence to study Ca2+ influx in individual rat PTs during normoxic and hypoxic superfusion. Normoxic Ca2+ influx was indeed reflected by the Mn2+ quenching of fura-2 fluorescence and this influx could be inhibited by the calcium entry blocker methoxyverapamil (D600; inhibition 50 +/- 2% and 35 +/- 3% for 10 and 100 mumol, respectively). La3+ completely blocked normoxic Ca2+ influx. Hypoxic superfusion or rat PTs did not induce an increase in Ca2+ influx, but reduced this influx to 79 +/- 3% of the normoxic control. We hypothesize that reducing Ca2+ influx during hypoxia provides the cell with a means to prevent cellular Ca2+ overload during ATP-depletion, where Ca2+ extrusion is limited.  相似文献   

12.
We demonstrate here that stimulated 45Ca2+ influx in A7r5 vascular smooth muscle cells induced either by receptor activation with [Arg]8 vasopressin or by the SR-Ca(2+)-ATPase inhibitor thapsigargin was increased more than threefold if cells were preloaded with the intracellular calcium chelator BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid). The increased influx is probably due to an attenuation of negative feedback of Ca2+ on its own entry accompanied by increased Ca2+ storage capacity of BAPTA-loaded cells leading to diminished cellular Ca2+ release. We propose that BAPTA preloading could be a useful approach to investigate receptor-induced Ca2+ influx.  相似文献   

13.
1. Cytosolic free calcium ion concentration ([Ca2+]i) and whole-cell L-type Ca2+ channel currents were measured during excitation-contraction (E-C) coupling in single voltage-clamped rat cardiac ventricular cells. The measurements were used to compute the total cellular efflux of calcium ions through sarcoplasmic reticulum (SR) Ca2+ release channels (FSR,rel) and the influx of Ca2+ via L-type Ca2+ channels (FICa). 2. FSR,rel was elicited by depolarizing voltage-clamp pulses 200 ms in duration to membrane potentials from -30 to +80 mV. Over this range, peak FSR,rel had a bell-shaped dependence on clamp pulse potential. In all cells, the 'gain' of the system, measured as the ratio, FSR,rel(max)/FICa(max), declined from about 16, at 0 mV, to much lower values as clamp pulse voltage was made progressively more positive. We named this phenomenon of change in gain as a function of membrane potential, 'variable gain'. At clamp pulse potentials in the range -30 to 0 mV, the gain differed from cell to cell, being constant at about 16 in some cells, but decreasing from high values (approximately 65) at -20 mV in others. 3. At clamp pulse potentials at which Ca2+ influx (FICa) was maintained, FSR,rel also had a small maintained component. When macroscopic Ca2+ influx was brief (1-2 ms, during 'tails' of FICa), FSR,rel rose rapidly to a peak after repolarization and then declined with a half-time of about 9 ms (typically). 4. The rising phase of [Ca2+]i transients could be interrupted by stopping Ca2+ influx rapidly (by voltage clamp). We therefore termed this phenomenon 'interrupted SR Ca2+ release'.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
Our previous studies showed that early, stage I preneoplastic cells (sup+ I) are highly susceptible to apoptosis, whereas the later, stage II preneoplastic cells (sup- II) are relatively resistant. To examine possible mechanisms that might explain these differences in the regulation of apoptosis, Ca2+ homeostasis was analyzed and comparisons were made between these two Syrian hamster embryo cell lines. The Ca2+ indicator, fura-2, and fluorescent microscopy were used to measure intracellular free calcium concentrations, [Ca2+]i. The results indicated that the [Ca2+]i level in logarithmically growing sup+ I cells (approximately 100 nM) was considerably lower than that observed in sup- II cells (approximately 260 nM). Serum removal resulted in a reduction of [Ca2+]i in the sup+ I cells (approximately 82 nM), whereas the [Ca2+]i level in sup- II cells did not change. Endoplasmic reticulum (ER) calcium levels were determined by measuring thapsigargin-releasable Ca2+. Reduced ER calcium was consistently observed in cells induced to undergo apoptosis. Specifically, thapsigargin-releasable Ca2+ was greatly reduced in sup+ I cells (45 nM) as compared to sup- II cells (190 nNM) after 4 h in low serum. When sup- II cells were placed under conditions that resulted in apoptosis (thapsigargin or okadaic acid), decreased ER calcium was observed. To determine whether reduced ER calcium had a causative effect in apoptosis, ER calcium levels were exogenously increased in sup+ I cells by raising extracellular Ca2+ to 3 mM; ER calcium levels were maintained, and apoptosis was blocked. Studies were performed to determined whether the decrease in ER calcium could be attributed to reduced Ca2+ influx at the plasma membrane. To measure directly whether Ca2+ entry was decreased in sup+ I cells in 0.2% serum, Mn2+ uptake was used to monitor Ca2+ influx. The data show that in low serum, the rate of thapsigargin-induced Mn2+ entry in sup+ I cells was approximately 50% lower than that of sup- II cells, demonstrating that capacitative entry is reduced in sup+ I cells. In further support of this hypothesis, thapsigargin-treated sup+ I cells (0.2% serum) showed decreased Ca2+ entry upon raising extracellular Ca2+ from 0 to 2 mM. We report the novel finding that early preneoplastic cells, which exhibit a high propensity to undergo apoptosis, have decreased calcium entry at the plasma membrane, resulting in decreased ER calcium pools. This study provides new insight into mechanisms that can be involved in the regulation/dysregulation of apoptosis during neoplastic progression. Furthermore, the data imply that preneoplastic cells, which have developed a mechanism to maintain ER calcium, would be less susceptible to apoptosis and would thus have an increased potential for becoming transformed.  相似文献   

16.
Treponema denticola is a cultivable oral spirochete which perturbs the cytoskeleton in cultured cells of oral origin, but intracellular signalling pathways by which it affects actin assembly are largely unknown. As the outer membrane (OM) of Treponema denticola disrupts actin-dependent processes that normally require precise control of intracellular calcium, we studied the effects of an OM extract on internal calcium release, ligand-gated and calcium release-activated calcium channels, and related mechanosensitive cation fluxes in human gingival fibroblasts (HGF). Single-cell ratio fluorimetry demonstrated that in resting cells loaded with Fura-2, baseline intracellular Ca2+ concentration ([Ca2+]i) was not affected by treatment with OM extract, but normal spontaneous [Ca2+]i oscillations were dramatically increased in frequency for 20 to 30 min followed by complete blockade. OM extract inhibited ATP-induced and thapsigargin-induced release of calcium from intracellular stores by 40 and 30%, respectively. Addition of Ca2+ to the extracellular pool following depletion of intracellular Ca2+ by thapsigargin and extracellular Ca2+ by EGTA yielded 59% less replenishment of [Ca2+]i in OM extract-treated than in control HGF. In cells loaded with collagen-coated ferric oxide beads to stimulate integrin-dependent calcium release, baseline [Ca2+]i was nearly doubled but was not significantly different in control and OM extract-treated cells. Magnetically generated tensile forces on the beads induced >300% increases of [Ca2+]i above baseline. Cells preincubated with OM extract exhibited dose-dependent and time-dependent reductions in stretch-induced [Ca2+]i transients, which were due to neither loss of beads from the cells nor cell death. The T. denticola OM inhibitory activity was eliminated by heating the OM extract to 60 degrees C and by boiling but not by phenylmethylsulfonyl fluoride treatment. Thus nonlipopolysaccharide, nonchymotrypsin, heat-sensitive protein(s) in T. denticola OM can evidently inhibit both release of calcium from internal stores and uptake of calcium through the plasma membrane, possibly by interference with calcium release-activated channels.  相似文献   

17.
Intracellular calcium ion ([Ca2+]i) transients were measured in voltage-clamped rat cardiac myocytes with fura-2 or furaptra to quantitate rapid changes in [Ca2+]i. Patch electrode solutions contained the K+ salt of fura-2 (50 microM) or furaptra (300 microM). With identical experimental conditions, peak amplitude of stimulated [Ca2+]i transients in furaptra-loaded myocytes was 4- to 6-fold greater than that in fura-2-loaded cells. To determine the reason for this discrepancy, intracellular fura-2 Ca2+ buffering, kinetics of Ca2+ binding, and optical properties were examined. Decreasing cellular fura-2 concentration by lowering electrode fura-2 concentration 5-fold, decreased the difference between the amplitudes of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes by twofold. Thus, fura-2 buffers [Ca2+]i under these conditions; however, Ca2+ buffering is not the only factor that explains the different amplitudes of the [Ca2+]i transients measured with these indicators. From the temporal comparison of the [Ca2+]i transients measured with fura-2 and furaptra, the apparent reverse rate constant for Ca2+ binding of fura-2 was at least 65s-1, much faster than previously reported in skeletal muscle fibers. These binding kinetics do not explain the difference in the size of the [Ca2+]i transients reported by fura-2 and furaptra. Parameters for fura-2 calibration, Rmin, Rmax, and beta, were obtained in salt solutions (in vitro) and in myocytes exposed to the Ca2+ ionophore, 4-Br A23187, in EGTA-buffered solutions (in situ). Calibration of fura-2 fluorescence signals with these in situ parameters yielded [Ca2+]i transients whose peak amplitude was 50-100% larger than those calculated with in vitro parameters. Thus, in vitro calibration of fura-2 fluorescence significantly underestimates the amplitude of the [Ca2+]i transient. These data suggest that the difference in amplitude of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes is due, in part, to Ca2+ buffering by fura-2 and use of in vitro calibration parameters.  相似文献   

18.
The relationship between the agonist-sensitive Ca2+ pool and those discharged by the Ca2+ -ATPase inhibitor thapsigargin (TG) were investigated in canine tracheal smooth muscle cells (TSMCs). In fura-2-loaded TSMCs, 5-hydroxytryptamine (5-HT) stimulated a rapid increase in intracellular Ca2+ ([Ca2+]i), followed by a sustained plateau phase that was dependent on extracellular Ca2+. In such cells, TG produced a concentration-dependent increase in [Ca2+]i, which remained elevated over basal level for several minutes and was substantially attenuated in the absence of extracellular Ca2+. Application of 5-HT after TG demonstrated that the TG-sensitive compartment partly overlapped the 5-HT-sensitive stores. Pre-treatment of TSMCs with TG significantly inhibited the increase in [Ca2+]i induced by 5-HT in a time-dependent manner. Similar results were obtained with two other Ca2+ -ATPase inhibitors, cyclopiazonic acid and 2,5-di-t-butylhydroquinone. Although these inhibitors had no effect on phosphoinositide hydrolysis, Ca2+ -influx was stimulated by these agents. These results suggest that depletion of the agonist-sensitive Ca2+ stores is sufficient for activation of Ca2+ influx. Some characteristics of the Ca2+ -influx activated by depletion of internal Ca2+ stores were compared with those of the agonist-activated pathway. 5-HT-stimulated Ca2+ influx was inhibited by La3+, membrane depolarisation, and the novel Ca2+ -influx blocker 1-?beta-[3-(4-methoxyphenyl) propoxy]-4-methoxyphenethyl?-1H-imidazole hydrochloride (SKF96365). Likewise, activation of Ca2+ influx by TG also was blocked by La3+, membrane depolarisation, and SKF96365. These results suggest that (1) in the absence of PI hydrolysis, depletion of the agonist-sensitive internal Ca2+ stores in TSMCs is sufficient for activation of Ca2+ influx, and (2) the agonist-activated Ca2+ influx pathway and the influx pathway activated by depletion of the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool are indistinguishable.  相似文献   

19.
1. We designed a new method to determine quantitatively the intracellular Ca2+ concentration ([Ca2+]i) in endothelial cells in situ, using front-surface fluorometry and fura-2-loaded porcine aortic valvular strips. Using this method, we investigated the characteristics of the G-protein involved in endothelin-1 (ET-1)-induced changes in [Ca2+]i of endothelial cells in situ. 2. Endothelial cells were identified by specific uptake of acetylated-low density lipoprotein labelled with 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate (DiI-Ac-LDL). Double staining with DiI-Ac-LDL and fura-2 showed that the valvular strip was covered with a monolayer of endothelial cells and that the cellular component which contributed to the fura-2 fluorescence, [Ca2+]i signal, was exclusively endothelial cells. 3. ET-1 (10(-7) M) induced an elevation of [Ca2+]i consisting of two components: the first was a rapid and transient elevation to reach a peak, followed by a second, sustained elevation (the second phase). The first phase was composed of extracellular Ca(2+)-independent and -dependent components, while the second phase was exclusively extracellular Ca(2+)-dependent. The extracellular Ca(2+)-independent component of the first phase was due to the release of Ca2+ from intracellular storage sites. The second phase and part of the first phase of [Ca2+]i elevation were attributed to the influx of extracellular Ca2+. The Ca2+ influx component was completely inhibited by 10(-3) M Ni2+ but was not affected by 10(-5) M diltiazem. 4. Pertussis toxin (IAP) markedly inhibited the extracellular Ca2+-dependent elevation of [Ca2+]j, but had no effect on the extracellular Ca2+-independent elevation of [Ca2+], caused by ET-1 (10-7M).5. Bradykinin (10-7 M) or ATP (10- 5M) elevated [Ca2+]i and these responses also consisted of extracellular Ca2+-independent and extracellular Ca2+-dependent components. IAP had no effect on either component of the [Ca2+]i elevation induced by bradykinin or ATP.6. From these findings we conclude that, in porcine endotheliel cells in situ, ET-1 elevates [Ca2+]i as are result of a Ca2+ influx component from the extracellular space and release of intracelluarly stored Ca2+ .The Ca2+ influx is regulated by an IAP-sensitive G-protein, while the release of Ca2+ from the intracellular store is not.  相似文献   

20.
Ethanol consumption frequently leads to a number of skeletal muscle disorders, including acute and chronic alcoholic myopathy. Ethanol has been found to interfere with signal transduction mechanisms in cardiac and smooth muscle cells. We studied the effects of ethanol on the intracellular calcium ([Ca2+]i) transients responsible for excitation-contraction coupling in human myotubes from chronic alcoholic patients and healthy controls. Cultured myotubes were loaded with the fluorescent Ca2+ indicator fura-2 and evaluated on a single-cell basis. Following electrical stimulation, ethanol caused a significant reversible dose-dependent reduction in [Ca2+]i transient amplitude, achieving a mean decrease of 36+/-5% at 300 mM ethanol (p < 0.01), without modifying the basal [Ca2+]i. This acute effect of ethanol was similar in myotubes obtained from chronic alcoholics and controls. Similarly, ethanol caused a dose-dependent reduction of [Ca2+]i transient amplitude in control samples when depolarization was elicited by 100 mM KCl (p < 0.01). Several potential mechanisms of ethanol action were studied in control muscle samples. Sarcolemmal Ca2+ entry was measured indirectly by monitoring Mn2+-quenching of intracellular fura-2 via the nitrendipine-sensitive Ca2+ channels during electrical pacing. Ethanol at doses of 100 mM and greater caused a dose-dependent reduction in the rate of quench (p < 0.01). In addition, the intracellular pool of Ca2+ releasable by caffeine was found to be reduced at 300 mM ethanol (p < 0.05). We conclude that ethanol reduces the [Ca2+]i transients underlying excitation-contraction coupling in human myotubes, and that this occurs to a similar extent in cells obtained from chronic alcoholics and controls. This acute effect of ethanol was primarily due to an inhibitory effect of ethanol on sarcolemmal Ca2+ influx via voltage-operated Ca2+ channels, although there may also be an effect on the Ca2+ sarcoplasmic reticulum loading state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号