首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
以Sn+SiO_2+Al_2O_3+CaF_2作为摩擦组元,石墨+Pb作为润滑组元,制备铜基粉末冶金列车闸片材料,在MM-1000Ⅱ型摩擦试验机上进行摩擦试验,测定制动速度在120~200 km/h范围内材料的摩擦因数、磨损量与表面温度,并观察摩擦表面形貌,研究制动速度对该材料摩擦学性能的影响。结果表明:在制动速度180 km/h时,随制动速度增加,闸片材料的摩擦因数在0.41~0.46之间波动,但制动速度达到200 km/h时,摩擦因数显著减小至0.32,摩擦因数稳定性总体较好。材料的磨损量随制动速度增大而增加,但在制动速度达到180 km/h时磨损量趋于稳定,为119 mg。低速制动下材料的磨损机理主要为疲劳磨损,高速制动时主要为磨粒磨损和氧化磨损。  相似文献   

2.
Cu基粉末冶金闸片在高速制动时受温度的影响易发生摩擦系数的衰退,直接影响列车制动的有效性。利用1:1制动试验台进行不同速度下Cu基粉末冶金闸片的高速制动试验,分析试验后的摩擦材料和磨屑组织。结果表明:制动速度为350 km·h-1和380 km·h-1产生的高温使摩擦材料表层的金属基体发生软化熔融,降低了摩擦副表面微凸点的剪切阻力,导致摩擦系数下降。摩擦表面形成的金属氧化膜具有减磨作用,造成摩擦系数的进一步衰退。在380 km·h-1制动时,石墨在高温下被氧化,摩擦表面失去稳定的润滑膜,出现粘着磨损和材料转移,磨耗量大幅增加。  相似文献   

3.
以铸钢为制动盘、Cu-Fe基粉末冶金材料为闸片组成摩擦副,利用MM-1000Ⅱ型摩擦磨损性能试验机研究了制动速度(60~380 km/h)、制动压力(0.3~0.5 MPa)对摩擦系数、闸片温升、制动距离和制动扭矩的影响,并分析了闸片的磨损特点和物相变化。结果表明:摩擦材料的摩擦系数随制动速度的增加而减小,闸片表面温度随着制动压力增加而升高,刹车距离随着制动压力的增加而减小,不同制动速度下的闸片磨损机理主要是疲劳磨损、磨粒磨损和氧化磨损。  相似文献   

4.
采用粉末冶金技术制备了一种高速列车用铜基闸片材料,研究了干湿环境下制动载荷对铜基闸片材料摩擦学性能的影响,探究了闸片材料及其配对材料(铸钢材料)的磨损规律。结果表明:随着制动载荷的增加,干湿态下摩擦稳定系数均先减小后增加,平均摩擦因数不断降低,闸片材料的磨损率先快速增加后小幅减小,铸钢材料的磨损率先快速增加后缓慢增加。湿态环境可减轻低制动载荷下闸片材料的剥落程度及高制动载荷下材料的犁削,降低了摩擦因数及材料的磨损率。  相似文献   

5.
在粉末冶金铜基摩擦材料中分别添加SiO2和ZrO2,研究SiO2和ZrO2对粉末冶金铜基摩擦材料与C/C-SiC复合材料配副时摩擦磨损性能的影响,并分析两者影响机制的内在关联。结果表明,含SiO2或ZrO2的铜基摩擦材料与C/C-SiC复合材料配副时,能在高制动速度下保持较高的平均摩擦因数,分别为0.375 8和0.342 4,摩擦材料的磨损量较低,为1.44μm/次和0.95μm/次,配副材料几乎无磨损。SiO2在制动过程中易脱落,形成磨粒,对摩擦材料与配副材料表面造成磨粒磨损,而ZrO2在基体中保持完整,以硬质微凸体的形式对C/C-SiC复合材料摩擦表面产生犁削作用。SiO2在高制动速度下破碎脱落后易嵌入C/C-SiC复合材料表面摩擦膜,有利于以Cu及Cu的化合物为主的磨屑在其周围积累,促进摩擦转移膜在C/C-SiC复合材料摩擦表面的形成,从而改善材料的摩擦磨损性能。  相似文献   

6.
在MM-2000Ⅱ型摩擦试验机上测试了Cu基粉末冶金列车闸瓦片材料在不同制动条件下的摩擦磨损性能。结果表明:试样在900℃退火2 h,晶粒有明显的层错条纹,可形成屏障阻碍位错的运动,使位错湮灭困难;亚晶界或晶界增加,导致晶粒细化,材料硬度提高;随着制动压力的增大,摩擦因数呈现先增大后减小的趋势,总体稳定性较好;磨损量先增加后逐渐趋于稳定。  相似文献   

7.
采用粉末冶金方法制备铜基摩擦材料,研究Al_2O_3的添加量对材料的摩擦磨损性能的影响。结果表明:Al_2O_3对材料摩擦磨损性能的影响与摩擦速度密切相关;随着Al_2O_3含量增加,材料的摩擦因数提高,密度降低,硬度增加,磨损量先减小后增大,Al_2O_3质量分数为9%时,复合材料的摩擦因数较高且稳定,磨损量最小。不含Al2O3的材料摩擦表面出现大量凹坑,磨损严重,随着Al_2O_3含量提高,凹坑数量减少,弥散分布的Al_2O_3粒子能强化基体表面强度,从而导致材料磨损量降低。  相似文献   

8.
用氩气雾化法制备的Zr_(50)Cu_(40)Al_(10)非晶粉末作为填充材料,采用热压工艺制备非晶/聚苯硫醚(PPS)树脂复合材料,对材料的摩擦磨损性能进行检测,分析磨损机理,并与Al_2O_3颗粒作为填料的PPS树脂基复合材料进行对比。结果表明:以Zr_(50)Cu_(40)Al_(10)非晶颗粒作为填充物,可降低PPS的摩擦因数,减小磨损量,对于PPS树脂材料抗磨性能的提升效果优于传统无机填料Al_2O_3。随非晶颗粒含量(体积分数)从0增加到40%,复合材料的摩擦因数与磨损量均逐步降低而后略有增加,磨损机理则从粘着磨损过渡到磨粒磨损,最终转为疲劳磨损。30%Zr_(50)Cu_(40)Al_(10)/PPS复合材料的质量磨损仅为纯聚苯硫醚的20.4%。Zr_(50)Cu_(40)Al_(10)非晶颗粒与摩擦副发生化学反应,参与转移膜的形成,并提高转移膜与摩擦副的结合强度,减少摩擦副表面的微凸体,从而降低摩擦副对复合材料基体的磨损。  相似文献   

9.
对原位生成TiC颗粒增强钛基复合材料进行锻造,通过金相显微镜(OPM)、扫描电镜(SEM)和能谱分析(EDS)等手段,研究锻造后材料的显微组织及拉伸断口形貌,利用CETR UMT-3多功能微摩擦磨损测试仪测定材料的摩擦磨损行为。结果表明:锻造后钛基复合材料的组织缺陷得到消除,晶粒明显细化,抗拉强度由1 126 MPa提高到1 309 MPa;材料拉伸断口为TiC解理断裂与基体局部延性断裂相结合的混合型断口。随载荷不断增加,TiC粒子首先断裂,裂纹在基体中迅速扩展,导致复合材料失效。在摩擦实验初期,材料的摩擦因数较小且较稳定,而后期摩擦因数变化幅度较大;随时间延长,磨损面上的TiC颗粒发生破碎,失去承载作用,导致磨损量变大;摩擦磨损过程中材料表面Ti发生氧化,形成氧化磨损;锻造后材料的磨损量及摩擦因数都减小。  相似文献   

10.
含炭纤维湿式铜基摩擦材料的性能   总被引:1,自引:0,他引:1  
采用粉末冶金方法制备含短炭纤维的湿式铜基摩擦材料,研究炭纤维含量对湿式摩擦材料的摩擦磨损性能和力学性能的影响,以及制动条件对动摩擦因数的影响。结果表明:随着炭纤维含量及材料的孔隙率增加、硬度及密度均降低,摩擦因数呈先增加后减小的变化趋势,磨损量呈先减小后增大的趋势。炭纤维含量为(质量分数)1%时材料的摩擦磨损性能最好,摩擦因数最大且最稳定,磨损量最小。材料摩擦因数随着载荷增大而增大,随炭纤维含量增加磨损率呈先减小后增大的趋势。炭纤维的加入提高了材料的能量许用值。  相似文献   

11.
采用传统的粉末冶金方法制备了高性能铜基制动闸片,并与商用铜基制动闸片作对比,在MM-1000Ⅱ型摩擦磨损试验机上对不同制动速度下的制动性能进行了探究,分析了闸片与制动盘的表面形貌。结果表明,随着制动速度的升高,自制闸片的摩擦系数先下降后上升,而商用闸片的摩擦系数降低后保持不变。摩擦系数的下降与摩擦表面摩擦膜的生成有关。随着制动速度的进一步升高,摩擦膜的破裂使得摩擦系数上升,铜的软化使得摩擦系数下降,由此可知,摩擦系数的变化同时受制于二者的综合作用。在180~350 km/h的速度范围内,自制铜基制动闸片比商用铜基制动闸片具有更高的摩擦系数和耐磨性,并在连续紧急制动过程中,也具有更大的摩擦系数波动。  相似文献   

12.
闸片是高速列车制动系统的核心部件,本文设计了350 km·h–1高速列车用铜基闸片材料,对闸片进行了1∶1台架实验考核,重点分析了摩擦膜的性质及闸片的摩擦磨损性能。结果表明,研制闸片不仅具有优异的摩擦系数稳定性和低的磨耗,还具有不伤盘的特点。瞬时摩擦系数和平均摩擦系数均满足TJCL/307—2019标准的要求,摩擦系数稳定性为0.0015,250~380 km?h–1制动速率范围内的摩擦系数热衰退仅0.027,在380 km?h–1下的平均摩擦系数仍维持在0.35,平均磨耗仅0.06 cm3?MJ–1。闸片优异的摩擦制动性能归因于形成了高强韧、低转移速率的摩擦膜。利用大粒径摩擦组元作为外部运动障碍钉扎摩擦膜。摩擦膜中的亚微米磨屑作为摩擦膜与对偶盘的啮合点,提供摩擦阻力,以保持高速制动时的摩擦系数。添加的易氧化组元为摩擦膜源源不断提供氧化物,研磨生成的纳米氧化物作为弥散相强化摩擦膜。通过多尺度颗粒的协同增强,实现了摩擦膜的动态稳定化,赋予了闸片优异的摩擦磨损性能。   相似文献   

13.
以粉末冶金法制备铜基粉末冶金摩擦材料, 采用洛氏硬度计和夏比冲击试验机对摩擦材料的力学性能进行表征, 利用MM-3000型摩擦磨损性能试验台研究了刹车速度对材料摩擦磨损性能的影响, 并借助电子扫描显微镜(scanning electron microscope, SEM)观察了摩擦材料的微观形貌。研究表明:铜基粉末冶金摩擦材料的摩擦磨损性能与刹车速度密切相关, 随着刹车速度的增大, 摩擦吸收功率近似线性增长, 而摩擦系数呈先增大后减小的趋势; 在高速刹车条件下, 铜基体自身发生软化会破坏摩擦材料表面形成的氧化膜, 降低了分子键的抗剪切强度, 从而增大了磨损量。  相似文献   

14.
采用粉末冶金工艺制备含4种粒度(20μm、30μm、50μm、70μm)铁粉增强的铜基摩擦材料,研究铁粉粒度对材料力学性能和制动摩擦性能的影响。采用TM-1型惯性试验台测试材料的制动摩擦性能,试验初速度为50~380 km/h。结果表明:铁粉粒度从20μm增加到70μm时,材料硬度从55.67 HRB降低到31.83HRB,剪切强度从12.56 MPa下降到10.27 MPa。这种硬度和强度的下降使大粒度样品表现出反常的摩擦特性:随着制动速度的提高,铁粉粒度为70μm的F70样品的摩擦因数不降低反而升高,当制动速度从120 km/h上升到380 km/h时,摩擦因数从0.338持续升高到0.356,并且从350 km/h后摩擦因数稳定不变。这种高而稳定的摩擦因数是保证列车在高速下紧急制动、平稳停驶所必需的。  相似文献   

15.
在粉末冶金铜基摩擦材料中添加6%(质量分数)的SiO2/ZrO2复合陶瓷组元,研究SiO2和ZrO2的质量分数对摩擦材料摩擦磨损性能的影响,并分析其机理。结果表明:随w(SiO2)/w(ZrO2)比值减小,铜基摩擦材料的密度和硬度增大。高速制动时,摩擦材料的摩擦因数和摩擦稳定因数较小。SiO2可有效提高摩擦因数,ZrO2可降低摩擦副的磨损率。当w(SiO2)/w(ZrO2)为2/4时,摩擦材料具有较好的摩擦磨损性能,高速制动下平均摩擦因数为0.326,摩擦稳定因素处于较高水平,为0.71,对偶数材料损伤在可接受范围内。SiO2较易脱落而形成磨粒,ZrO2与基体界面结合状态较好,所以随SiO2含量减少,主要磨损机制从磨粒磨损转变为黏着磨损和磨粒磨损,最后转变为剥层磨损。  相似文献   

16.
以电解铜粉和TiC粉为原料, 采用粉末冶金法制备了增强体质量分数为5%、10%、15%、20%的TiC颗粒增强铜基复合材料。通过对显微组织的观察和对相对密度、硬度、电导率、磨损率、摩擦系数的测试, 研究了增强相质量分数、烧结温度对复合材料组织性能的影响。研究结果表明, TiC颗粒除少量团聚外均匀分布在基体上, 并与基体结合良好; 随烧结温度升高, 铜基复合材料的密度和硬度均有所增加; 随增强相质量分数的增加, 硬度增加, 相对密度和电导率均有所下降; 磨损率则表现为先降低后有所增加的趋势, 磨损率在TiC质量分数为15%时最低; 铜基复合材料的摩擦系数明显低于纯铜, 其磨损机制主要以磨粒磨损为主。  相似文献   

17.
讨论了大范围内铜含量(0~30%,质量分数)对铁基粉末冶金航空刹车材料摩擦磨损性能的影响和材料的摩擦磨损机理,结果表明:不合铜时,材料的摩擦因数和磨损量均较大,磨损机理主要为粘着磨损;添加铜后,材料的摩擦因数和磨损量均有所下降,疲劳磨损为主要机理;当铜含量升高到有大量游离铜存在时,材料的摩擦因数和磨损量逐渐增加,磨损机理又主要体现为粘着磨损。  相似文献   

18.
采用HJDS-Ⅱ惯性台在各种制动速度/压力及外场装机使用的条件下,对西安超码科技公司采用自主创新专利技术生产的Chaoma B757,Chaoma A320炭刹车盘与Dunlop公司的B757,以及Messier-Bugatti公司的A320Sepcarb?ⅢOR炭刹车盘的摩擦因数、平均力矩和磨损率进行对比试验。结果表明:4种类型炭刹车盘材料的能量、力矩均随制动速度和制动压力增加而增大;摩擦因数在低速阶段均出现低能峰值特性,然后随着制动速度与压力增加呈降低趋势。ChaomaB757,A320炭刹车盘凸显2个特色:在飞机中止起飞能量下制动压力比国外原件低25%,摩擦因数比国外原件高25%~29%;B757炭刹车盘的装机应用的最长使用寿命达到2823~3289次起落,与国外B757原件的使用寿命相当,凸显出优异的低磨损率特色。  相似文献   

19.
采用粉末冶金压烧技术制备了含不同质量分数石墨的铜基摩擦材料,研究了石墨含量对摩擦材料微观组织、磨损性能和磨损机理的影响。结果表明:铜基体的连续性随石墨含量增加而降低,动摩擦系数随石墨含量的增加先增加后降低,磨损量随着石墨含量的增加而减小;材料的磨损机理为犁沟式磨料磨损;石墨质量分数为16%时,试样动摩擦系数和静摩擦系数最高并且稳定,具有最好的摩擦磨损性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号