首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this research was to evaluate the feasibility, the stability and the efficiency of a start‐up at 20 °C and 25 °C of anaerobic sequencing batch reactors (ASBRs) treating slaughterhouse wastewater. Influent chemical oxygen demand (COD) and suspended solids concentrations averaged 7500 and 1700 mg dm?3, respectively. Reactor start‐up was completed in 168 and 136 days at 20 °C, and 25 °C, respectively. The start‐up process was stable at both temperatures, except for a short period at 20 °C, when effluent volatile fatty acid (VFA) concentrations increased from an average of 40 to 400 mg dm?3. Effluent quality varied throughout start‐up, but in the last 25 days of the experiment, as the ASBRs were operated under organic loading rates of 2.25 ± 0.21 and 2.86 ± 0.24 kg m?3 d?1 at 20 °C and 25 °C, respectively, total COD was reduced by 90.3% ± 1.3%. Methanogenesis was not a limiting factor during start‐up. At 20 °C, the limiting factor was the acidification of the soluble organics and, to a smaller extent, the reduction of propionic, isobutyric and isovaleric acids into lower VFAs. At 25 °C, the limiting factor was the hydrolysis of particulate organics. To minimize biomass loss during the start‐up period, the organic loading rate should be increased only when 75 –80% of the COD fed has been transformed into methane within the design hydraulic retention time. © 2001 Society of Chemical Industry  相似文献   

2.
A simulated textile effluent (STE) was generated for use in laboratory biotreatment studies; this effluent contained one reactive azo dye, PROCION Red H‐E7B (1.5 g dm−3); sizing agent, Tissalys 150 (1.9 g dm−3); sodium chloride (1.5 g dm−3) and acetic acid (0.53 g dm−3) together with nutrients and trace elements, giving a mean COD of 3480 mg dm−3. An inclined tubular anaerobic digester (ITD) was operated for 9 months on the STE and a UASB reactor for 3 months. For a 57 day period anaerobic effluent from two reactors, a UASB and an ITD, was mixed and treated in an aerobic stage. In days 77–247 68% of the true colour of PROCION Red H‐E7B was removed by anaerobic treatment with no colour removal aerobically and up to 37% COD was removed anaerobically, with a corresponding BOD removal of 71%. For combined anaerobic and aerobic treatment a mean COD removal of 57% and BOD removal of 86% was achieved. Operation of the ITD at a 2.8 day HRT (volumetric loading rate (B v) 1.24 g COD dm−3day−1) and the UASB at a 2 day HRT (B v 1.74 g COD dm−3day−1) gave comparable COD removals but the UASB gave better true colour removal. Effluent from the combined process operating on this simulated waste still contained an average 1500 mg COD dm−3, and further treatment would be required to meet consent standards. © 1999 Society of Chemical Industry  相似文献   

3.
The degradation of a non‐inhibitory substrate (sucrose) in upflow anaerobic sludge bed (UASB) reactors with different superficial flow velocites (us) was performed to generate experimental data. Additionally, a kinetic model accounting for the mass fraction of methanogens (f) and granule size distribution in UASB reactors is also proposed. At the volumetric loadings of 2.65–21.16 g COD dm?3 day?1, both the COD removal efficiency and granule size of the UASB reactors increase with increasing us. The f values determined experimentally increase from 0.13–0.24 to 0.27–0.43 if the volumetric loading is increased from 2.65 to 5.29 g COD dm?3 day?1. With a further increase in volumetric loading, the f values decline because of the accumulation of volatile fatty acids (VFAs). The predicted residual concentrations of VFAs and COD are in fairly good agreement with the experimental data. From the calculated effectiveness‐factor values, the influence of mass transfer resistance of the substrate sucrose on the overall substrate removal rate should not be neglected. From parametric sensitivity analyses together with the simulated concentration profiles, methanogenesis is the rate‐limiting step. Copyright © 2003 Society of Chemical Industry  相似文献   

4.
Thermophilic anaerobic treatment of hot vegetable processing wastewaters was studied in laboratory-scale UASB reactors at 55°C. The high-strength wastewater streams, deriving from steam peeling and blanching of carrot, potato and swede were used. The reactors were inoculated with mesophilic granular sludge. Stable thermophilic methanogenesis with about 60% COD removal was reached within 28 days. During the 134 day study period the loading rate was increased up to 24 kg COD m−3 day−1. High treatment efficiency of more than 90% COD removal and concomitant methane production of 7·3 m3 CH4 m−3 day−1 were achieved. The anaerobic process performance was not affected by the changes in the wastewater due to the different processed vegetables. The results demonstrated the feasibility of thermophilic anaerobic treatment of vegetable processing wastewaters in UASB reactors. © 1997 SCI.  相似文献   

5.
Wastewaters generated by a factory processing marine products are characterized by high concentrations of organic compounds and salt constituents (>30 g dm?3). Biological treatment of these saline wastewaters in conventional systems usually results in low chemical oxygen demand (COD) removal efficiency, because of the plasmolysis of the organisms. In order to overcome this problem a specific flora was adapted to the wastewater from the fish‐processing industry by a gradual increase in salt concentrations. Biological treatment of this effluent was then studied in a continuous fixed biofilm reactor. Experiments were conducted at different organic loading rates (OLR), varying from 250 to 1000 mg COD dm?3 day?1. Under low OLR (250 mg COD dm?3 day?1), COD and total organic carbon (TOC) removal efficiencies were 92.5 and 95.4%, respectively. Thereafter, fluctuations in COD and TOC were observed during the experiment, provoked by the progressive increase of OLR and the nature of the wastewater introduced. High COD (87%) and TOC (99%) removal efficiencies were obtained at 1000 mg COD dm?3 day?1. © 2002 Society of Chemical Industry  相似文献   

6.
《分离科学与技术》2012,47(3):470-481
The electrochemical oxidation of distillery effluent was studied in a batch reactor in the presence of supporting electrolyte NaCl using Mixed Metal Oxide (MMO) electrode. The effect of operating parameters such as current density, initial pH, and initial electrolyte concentration on the percentage of Chemical Oxygen Demand (COD) removal, power consumption, and current efficiency were studied. The maximum percentage removal of COD was observed to be 84% at a current density of 3 A/dm2at an electrolyte concentration of 10 g/l with an effluent COD concentration of 1000 ppm and at an initial pH of 6. The operating parameters for the treatment of distillery effluent by electrochemical process were optimized using response surface methodology by CCD. The quadratic regression models with estimated coefficients were developed for the percentage removal of COD and power consumption. It was observed that the model predictions matched with experimental values with an R2 value of 0.9504 and 0.9083 for COD removal and power consumption respectively. The extent of color removal and oxidation of organic compounds were analyzed using UV spectrophotometer and HPLC.  相似文献   

7.
A comparative kinetic study was carried out on the anaerobic digestion of two‐phase olive mill effluent (TPOME) using three 1‐dm3 volume stirred tank reactors, one with freely suspended biomass (control), and the other two with biomass supported on polyvinyl chloride (PVC) and bentonite (aluminium silicate), respectively. The reactors were batch fed at mesophilic temperature (35 °C) using volumes of TPOME of between 50 and 600 cm3, corresponding to chemical oxygen demand (COD) loadings in the range of 1.02–14.22 g, respectively. The process followed first‐order kinetics and the specific rate constants, K0, were calculated. The K0 values decreased considerably from 2.59 to 0.14 d?1, from 1.93 to 0.23 d?1 and from 1.52 to 0.17 d?1 for the reactors with suspended biomass (control) and biomass immobilized on PVC and bentonite, respectively, when the COD loadings increased from 1.02 to 14.22 g; this showed an inhibition phenomenon in the three reactors studied. The values of the critical inhibitory substrate concentration (S*), theoretical kinetic constant without inhibition (KA) and the inhibition coefficient or inhibitory parameter for each reactor (n) were determined using the Levenspiel model. Copyright © 2004 Society of Chemical Industry  相似文献   

8.
BACKGROUND: Raw cheese whey originating from white cheese production results in a strong and complex wastewater excessively rich in organic matter (chemical oxygen demand, COD = 28–65 g L?1), fatty matter (14–24.5 g L?1) and acidity (3.9–6.1 g L?1). It was treated in a three‐stage configuration consisting of a pre‐acidification (PA) tank and sequential upflow anaerobic sludge bed reactors (UASBRs) at 2.8–7 g COD L?1 day?1 organic loading rates, during which the effects of effluent recycling at low rates and promoted SRB activity were investigated. Acidification, volatile fatty acids (VFA), COD and fatty matter removal and volatile solids were monitored throughout the system during the study. RESULTS: Recycling of the effluent promoted VFA and COD removal as well as pH stability in both stages of the UASBRs and the effluent where high alkalinity levels were recovered reducing alkali requirement to 0.05 g OH g?1 CODapplied. Higher removal rates of 71–100 and 50–92% for VFA and COD were obtained by use of recycling. Fatty matter was removed at 63–89% throughout the study. Volatile solids build‐up was significant in the inlet zones of the UASBRs. CONCLUSIONS: The system produced efficient acidification in the PA tank, balanced pH levels and an effluent high in alkalinity and BOD/COD ratio. Efficient VFA removal and solids immobilization was obtained in both stages up to the highest loading rate. Recycling improved the system performance under high fatty matter loading conditions. A major advantage of the sequential system was that the second stage UASBR compensated for reduced performance in the first stage. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
In this work, the biodegradability of wastewater from a slaughterhouse located in Ke?an, Turkey, was studied under aerobic and anaerobic conditions. A very high total COD content of 7230 mg dm?3 was found, due to an inefficient blood recovery system. Low BOD5/COD ratio, high organic nitrogen and soluble COD contents, were in accordance with a high blood content. A respirometry test for COD fractionation showed a very low readily biodegradable fraction (SS) of 2%, a rapidly hydrolysable fraction (SH) of 51%, a slowly hydrolysable fraction (XS) of 33% and an inert fraction of 6%. Kinetic analysis revealed that hydrolysis rates were much slower than these of domestic sewage. The results underlined the need for an anaerobic stage prior to aerobic treatment. Tests with an anaerobic batch reactor indicated efficient COD degradation, up to around 80% removal. Further anaerobic degradation of the remaining COD was much slower and resulted in the build up of inert COD compounds generated as part of the metabolic activities in the anaerobic reactor. Accordingly, it is suggested that an appropriate combination of anaerobic and aerobic reactors would have to limit anaerobic degradation to around 80% of the tCOD and an effluent concentration above 1000 mg dm?3, for the optimum operation of the following aerobic stage. © 2003 Society of Chemical Industry  相似文献   

10.
The feasibility of the expanded granular sludge bed (EGSB) system for the treatment of malting waste water under psychrophilic conditions was investigated by operating a pilot-scale 225·5 dm3 EGSB-reactor system in the temperature range from 13 to 20°C. The concentration of chemical oxygen demand (COD) in the malting waste water was between 282 and 1436 mg dm−3. The anaerobically biodegradable COD of the waste water was about 73%, as determined in the batch bioassays. During reactor operation at 16°C, the COD removal efficiencies averaged about 56%, at organic loading rates (OLR) ranging between 4·4 and 8·8 kg COD m−3 day−1 and a hydraulic retention time (HRT) of approximately 2·4 h. At 20°C, removal efficiencies were approximately 66% and 72%, respectively, at OLRs of 8·8 and 14·6 kg COD m−3 day−1, corresponding to HRTs of 2·4 and 1·5 h. The specific methanogenic activity with the sludge from the reactor, assessed on acetate and volatile fatty acids mixture as substrates, significantly increased (80%) in time, indicating an enrichment of methanogens and acetogens even at the low temperatures applied. These findings are of considerable practical importance because they indicate that anaerobic treatment of low strength waste waters at low temperature might become a feasible option. © 1997 SCI.  相似文献   

11.
The conventional chemical reduction of Cr(VI) to Cr(III) and subsequent Cr(OH)3 precipitation are expensive due to the use of large amounts of chemicals and the generation of chemical sludges. An attempt was carried out for microbial Cr(VI) removal in an anaerobic chemostat fed with an acetate-containing synthetic medium. With 26 mg Cr(VI) dm−3 in the influent, almost complete removal of Cr(VI) was achieved at dilution rates of 0·15 and 0·32 day−1 at 20°C and at 35°C, respectively. The optimum Cr(VI) mass loading and the specific Cr(VI) applied rates were found to be 5 mg Cr(VI) dm−3 day−1 and 0·02 mg Cr(VI) mg−1 VSS day−1, respectively. Either the influent Cr(VI) concentration or the dilution rate could be adjusted to maintain an efficient removal of Cr(VI) in a continuous operation. Since the Cr(VI)-reducing activity is associated with the biomass concentration in the system, recycling the effluent solids is essential for practical application. In a batch reactor with the biomass collected from the chemostat, NaAc degradation appeared to be proportional to Cr(VI) reduction with the ratio of 9 mg C mg−1 Cr(VI) at 35°C. As reactions proceeded, the oxidation–reduction potential correspondingly decreased and both pH and alkalinity increased. © 1997 SCI.  相似文献   

12.
Sequential biological anaerobic–aerobic treatment of oil shale ash dump leachate was studied using laboratory-scale reactors and bioassays. The COD of the leachate was 2·0–3·0 g dm?3. The leachate was known to contain several phenolic compounds and to have a high sulphur concentration. The proportion of the leachate in the feed of the biological process was gradually increased during a 309 day test period. With 100% leachate in the feed, COD removal was 35% in the anaerobic stage while in the combined process the COD and BOD7 removals were up to 75% and 99%, respectively. The removal of total phenols was insignificant in the anaerobic stage, while up to 85% removal was obtained by the combined anaerobic–aerobic process. In the anaerobic stage, degradation of organic compounds was mainly a result of sulphide production. The results demonstrated that the leachates were amenable to biological treatment.  相似文献   

13.
A study of the effect of organic loading rate on the performance of anaerobic digestion of two‐phase olive mill solid residue (OMSR) was carried out in a laboratory‐scale completely stirred tank reactor. The reactor was operated at an influent substrate concentration of 162 g chemical oxygen demand (COD) dm?3. The organic loading rate (OLR) varied between 0.8 and 11.0 g COD dm?3 d?1. COD removal efficiency decreased from 97.0% to 82.6% when the OLR increased from 0.8 to 8.3 g COD dm?3 d?1. It was found that OLRs higher than 9.2 g COD dm?3 d?1 favoured process failure, decreasing pH, COD removal efficiency and methane production rates (QM). Empirical equations described the effect of OLR on the process stability and the effect of soluble organic matter concentration on the total volatile fatty acids (TVFA)/total alkalinity (TAlk) ratio (ρ). The results obtained demonstrated that rates of substrate uptake were correlated with concentration of biodegradable COD, through an equation of the Michaelis–Menten type. The kinetic equation obtained was used to simulate the anaerobic digestion process of this residue and to obtain the theoretical COD degradation rates in the reactor. The small deviations obtained (equal to or lower than 10%) between values calculated through the model and experimental values suggest that the proposed model predicts the behaviour of the reactor accurately. Copyright © 2007 Society of Chemical Industry  相似文献   

14.
This work describes a comparative study of staged and non-staged anaerobic filters for treating a synthetic dairy waste under similar operating conditions. The effect of increasing the substrate concentration from 3 to 12 g COD dm−3 at a constant hydraulic residence time (HRT) of 2 days was evaluated with respect to overall reactor performance, biogas production, volatile fatty acids profiles along the height, methanogenic and acidogenic activity distribution, and hydrodynamic behaviour. The potential maximum specific methanogenic activity against acetate, hydrogen, propionate and butyrate and the lactose specific activity were determined for sludge sampled from three different points in each reactor, under two operating conditions (influent COD of 3 and 9 g COD dm−3). Although all trophic groups involved in the anaerobic process were found throughout the reactors, it was possible to identify different specific sludges at different heights in both reactors. Performances of the two configurations were very similar under the operating conditions tested and the plug flow behaviour of the staged reactor was clearly reduced when the influent concentration increased from 3 to 9 g COD dm−3. © 1998 Society of Chemical Industry  相似文献   

15.
An upflow anaerobic filter (23 dm3 working volume) was used for the treatment of palm oil mill effluent. The filter was continuously operated for 215 days with organic loads ranging from 1·2 to 11·4 kg of chemical oxygen demand per cubic metre per day and hydraulic retention times from 15 to 6 days. The overall substrate removal efficiency was very high, up to 90% and the filter effluent contained almost no suspended solids. For all runs, the operation of the filter exhibited good stability for acidity and alkalinity, indicating that the use of buffer solutions would not be required. The methane concentration in the biogas, whose production varied from 20 to 165 dm3 per day, was about 60%. Daily gas production varied in the range 0·69–0·79 dm3 per gram of chemical oxygen demand removed.  相似文献   

16.
The upflow anaerobic sludge blanket (UASB) has been used successfully to treat a variety of industrial wastewaters. It offers a high degree of organics removal, low sludge production and low energy consumption, along with energy production in the form of biogas. However, two major drawbacks are its long start‐up period and deficiency of active biogranules for proper functioning of the process. In this study, the influence of a coagulant polymer on start‐up, sludge granulation and the associated reactor performance was evaluated in four laboratory‐scale UASB reactors. A control reactor (R1) was operated without added polymer, while the other three reactors, designated R2, R3 and R4, were operated with polymer concentrations of 5 mg dm?3, 10 mg dm?3 and 20 mg dm?3, respectively. Adding the polymer at a concentration of 20 mg dm?3 markedly reduced the start‐up time. The time required to reach stable treatment at an organic loading rate (OLR) of 4.8 g COD dm?3 d?1 was reduced by more than 36% (R4) as compared with both R1 and R3, and by 46% as compared with R2. R4 was able to handle an OLR of 16 g COD dm?3 d?1 after 93 days of operation, while R1, R2 and R3 achieved the same loading rate only after 116, 116 and 109 days respectively. Compared with the control reactor, the start‐up time of R4 was shortened by about 20% at this OLR. Granule characterization indicated that the granules developed in R4 with 20 mg dm?3 polymer exhibited the best settleability and methanogenic activity at all OLRs. The organic loading capacities of the reactors were also increased by the addition of polymer. The maximum organic loading of the control reactor (R1) without added polymer was 19.2 g COD dm?3 d?1, while the three polymer‐assisted reactors attained a marked increase in organic loading of 25.6 g COD dm?3 d?1. Adding the cationic polymer could result in shortening of start‐up time and enhancement of granulation, which may in turn lead to improvement in the efficiency of organics removal and loading capacity of the UASB system. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
Results are reported of the electrochemical oxidation of sodium dodecylbenzenesulfonate (SDBS), a common surfactant, at boron-doped diamond anodes. The measured critical micelle concentration (CMC) for SDBS in water at 24 °C was almost 150 mg dm−3, but this decreased to almost 30 mg dm−3 in 0.1 M sodium sulfate. Cyclic voltammetry of a boron doped diamond (BDD) electrode in aqueous SDBS solutions exhibited oxidation current densities at very positive potentials; however, solutions of monomers at concentrations <CMC gave rise to higher current densities than in higher concentration solutions that formed micelles. Galvanostatic electrolyses, with samples analyzed for Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD), were performed in an electrolytic flow cell without separator, operating in batch recycle mode, using solutions containing SDBS at initial concentrations of 25 and 250 ppm. SDBS in basic media (pH = 12) exhibited lower TOC removal rates than in acidic or neutral solutions, due to concurrent oxidation of dissolved carbonates at potentials less positive than required for water oxidation, as evident in cyclic voltammograms. Decreasing the [electrolyte]/[surfactant] ratio from 200 to 10 increased TOC removal rates. For solutions containing monomers, TOC removal rates also increased with flow rate in the second part of the electrolysis, corresponding to reaction of smaller, fragmented organic compounds. When COD removal from a solution containing SDBS micelles was mass transport controlled, current efficiencies were constant at ca. 50%, due to dimerisation of hydroxyl radical to H2O2 and its oxidation to dioxygen.  相似文献   

18.
Wastewater from eucalyptus fiber board manufacturing (EFBM) was characterized and studied for its treatability by anaerobic digestion. The characteristics of the wastewater (in mg dm?3), are as follows: COD (42 000), SS (550), SO (1200), PO.P (50), NH.N (15), VFA (710), phenol (20), p-cresol (125), tannin COD (1460) and pH 2.8. Approximately 60% of the COD is composed of carbohydrates. The continuous treatment of EFBM wastewater resulted in 93% COD removal and 78% COD methanogenized, with influent COD values of 20 g dm?3 and OLR of 17 kg COD m?3 d?1. The biodegradation reached 94% of influent COD and 74% of influent ultraviolet absorbance (215 nm). EFBM wastewater supplied at 20 g COD dm?3 (1:1 tap water diluted) caused 50% methanogenic toxicity, which did not disappear when tannins were removed by adsorption on PVP (polyvinylpyrrolidone). The toxicity decreased to 25% once the wastewater was autoxidized with air at high pH values. However, the effluent of the continuously fed column didn't show methanogenic toxicity, therefore the main toxic compounds in the wastewater were removed during anaerobic treatment.  相似文献   

19.
This paper evaluates the performance of a laboratory‐scale anaerobic fixed‐film reactor (AFFR) with arranged media treating slaughterhouse wastewater. The reactor was operated at 20 °C, its organic loading rate was increased from 1.8 to 9.2 kg COD m?3 d?1, and it had a short hydraulic residence time (5–9 h). The influence of wastewater concentrations on its performance was studied by artificially increasing the blood content of the wastewater. The efficiency of the removal of organic matter decreased from 70% to 54% as the superficial velocity increased from 0.12 to 0.97 m h?1, due mainly to distribution defects, as had been confirmed experimentally by tracer tests. The kinetics of the anaerobic processes was limited by substrate availability, even at high COD concentrations (between 700 and 1100 mg dm?3) due to a high content of slowly biodegradable and inert compounds present in the wastewater from the slaughterhouse. It was observed that a large amount of the organic matter had accumulated inside the reactor instead of being removed by methanogenic digestion. Furthermore, the fraction of organic matter held inside the reactor varied significantly in relation to the blood content of the wastewater. Copyright © 2005 Society of Chemical Industry  相似文献   

20.
The production of volatile fatty acids by anaerobic digestion of solid potato waste was investigated using a batch solid waste reactor with a working capacity of 2 dm?3 at 37°C. Solid potato waste was packed into the digester and the organic content of the waste was released by microbial activity by circulating water over the bed, using batch loads of 500 g or 1000 g potato waste. The sequence of appearance of the volatile fatty acids was (acetic, propionic); (n‐butyric); (n‐valeric, iso‐valeric, caproic); (iso‐butyric). After 300 h digestion of potato waste on a small scale, the fermentation products were chiefly (mg g?1 total VFAs): acetic acid (420), butyric acid (310), propionic acid (140) and caproic acid (90), with insignificant amounts of iso‐butyric acid, n‐valeric and iso‐valeric acids. When the load of potato solids was increased, the volatile fatty acid content was similar, but butyric acid constituted 110 mg g?1 and lactic acid 400 mg g?1 of the total volatile fatty acids. The maximum soluble chemical oxygen demand (COD) achieved under the experimental conditions used was 27 and 37 g COD dm?3 at low and high loadings of potato solids, respectively. The total volatile fatty acids reached 19 g dm?3 of leachate at both loads of potato solid waste. Gas production was negligible, indicating that methanogenic activity was effectively inhibited. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号